深度演算法與人工智慧
① 深度學習和人工智慧之間是什麼樣的關系
我只是想要點分,所以如果可以的話請點贊
人工智慧很早就有了,人工智內能本質就是讓機器具有容智慧
但是機器只能夠學習,目前仍不具有強主動創造能力,和幾十年前一樣,他又是怎麼火起來的?
那麼為什麼人工智慧火起來了,因為深度學習,深度學習火起來是因為深度神經網路
深度學習是人工智慧的一種最火熱的實現手段,主要依賴於高質量的演算法和大數據計算技術
所以只有硬體跟上去了,深度學習才能更好的實現,這就是它火起來的原因
② 深度學習和人工智慧有什麼關系
人工智慧
人工智慧英文縮寫為AI,它是研究、開發用於模擬、延伸和擴展人的智能的理論、方法、技術及應用系統的一門新的技術科學。人工智慧是計算機科學研究領域的一個重要分支,又是眾多學科的一個交叉學科,它企圖了解智能的實質,並生產出一種新的能以人類智能相似的方式做出反應的智能機器,該領域的研究包括語音識別、圖像識別、機器人、自然語言處理、智能搜索和專家系統等等,人工智慧可以對人的意識、思維的信息過程的模擬。人工智慧包括眾多的分支領域,比如大家熟悉的機器學習、自然語言理解和模式識別等。
機器學習
機器學習屬於人工智慧研究與應用的一個分支領域。機器學習的研究更加偏向理論性,其目的更偏向於是研究一種為了讓計算機不斷從數據中學習知識,而使機器學習得到的結果不斷接近目標函數的理論。
機器學習,引用卡內基梅隆大學機器學習研究領域的著名教授Tom Mitchell的經典定義:
如果一個程序在使用既有的經驗E(Experience)來執行某類任務T(Task)的過程中被認為是「具備學習能力的」,那麼它一定要展現出:利用現有的經驗E,不斷改善其完成既定任務T的性能(Performance)的特質。
機器學習已經有了十分廣泛的應用,例如:數據挖掘、計算機視覺、自然語言處理、生物特徵識別、搜索引擎、醫學診斷、檢測信用卡欺詐、證券市場分析、DNA序列測序、語音和手寫識別、戰略游戲和機器人運用。在我們當下的生活中,語音輸入識別、手寫輸入識別等技術,識別率相比之前若干年的技術識別率提升非常巨大,達到了將近97%以上,大家可以在各自的手機上體驗這些功能,這些技術來自於機器學習技術的應用。
深度學習
深度學習的概念源於人工神經網路的研究。含多隱層的多層感知器就是一種深度學習結構。深度學習通過組合低層特徵形成更加抽象的高層表示屬性類別或特徵,以發現數據的分布式特徵表示。晦澀難懂的概念,略微有些難以理解,但是在其高冷的背後,卻有深遠的應用場景和未來。
關系
嚴格意義上說,人工智慧和機器學習沒有直接關系,只不過是機器學習的方法被大量的應用於解決人工智慧的問題而已。目前機器學習是人工智慧的一種實現方式,也是最重要的實現方式。
深度學習是機器學習比較火的一個方向,其本身是神經網路演算法的衍生,在圖像、語音等富媒體的分類和識別上取得了非常好的效果。
人工智慧(AI)和機器學習(ML)現在是兩個非常熱門的流行語,通常似乎可以互換使用。但這二者並不完全一樣,但是有時會導致人們的看法有一些混亂,因此需要解釋這二者之間的區別。當大數據、數據分析,以及更廣泛的技術變革浪潮席捲全球時,這兩個術語都會頻繁出現。總之,最好的答案是:人工智慧是一種機器能夠以人們認為「聰明」的方式執行任務的更廣泛的概念。而且,機器學習是人工智慧的一個最新應用,它基於這樣一個想法:真的應該能夠讓機器訪問數據,讓他們自己學習。
③ 深度解析人工智慧,機器學習和深度學習的區別
有人說,人工智慧(AI)是未來,人工智慧是科幻,人工智慧也是我們日常生活中的一部分。這些評價可以說都是正確的,就看你指的是哪一種人工智慧。
今年早些時候,Google DeepMind的AlphaGo打敗了韓國的圍棋大師李世乭九段。在媒體描述DeepMind勝利的時候,將人工智慧(AI)、機器學習(machine learning)和深度學習(deep learning)都用上了。這三者在AlphaGo擊敗李世乭的過程中都起了作用,但它們說的並不是一回事。
今天我們就用最簡單的方法——同心圓,可視化地展現出它們三者的關系和應用。
人工智慧、機器學習和深度學習之間的區別和聯系
如上圖,人工智慧是最早出現的,也是最大、最外側的同心圓;其次是機器學習,稍晚一點;最內側,是深度學習,當今人工智慧大爆炸的核心驅動。
五十年代,人工智慧曾一度被極為看好。之後,人工智慧的一些較小的子集發展了起來。先是機器學習,然後是深度學習。深度學習又是機器學習的子集。深度學習造成了前所未有的巨大的影響。
| 從概念的提出到走向繁榮
1956年,幾個計算機科學家相聚在達特茅斯會議(Dartmouth Conferences),提出了「人工智慧」的概念。其後,人工智慧就一直縈繞於人們的腦海之中,並在科研實驗室中慢慢孵化。之後的幾十年,人工智慧一直在兩極反轉,或被稱作人類文明耀眼未來的預言;或者被當成技術瘋子的狂想扔到垃圾堆里。坦白說,直到2012年之前,這兩種聲音還在同時存在。
過去幾年,尤其是2015年以來,人工智慧開始大爆發。很大一部分是由於GPU的廣泛應用,使得並行計算變得更快、更便宜、更有效。當然,無限拓展的存儲能力和驟然爆發的數據洪流(大數據)的組合拳,也使得圖像數據、文本數據、交易數據、映射數據全面海量爆發。
讓我們慢慢梳理一下計算機科學家們是如何將人工智慧從最早的一點點苗頭,發展到能夠支撐那些每天被數億用戶使用的應用的。
| 人工智慧(Artificial Intelligence)——為機器賦予人的智能
人工智慧、機器學習和深度學習之間的區別和聯系
早在1956年夏天那次會議,人工智慧的先驅們就夢想著用當時剛剛出現的計算機來構造復雜的、擁有與人類智慧同樣本質特性的機器。這就是我們現在所說的「強人工智慧」(General AI)。這個無所不能的機器,它有著我們所有的感知(甚至比人更多),我們所有的理性,可以像我們一樣思考。
人們在電影里也總是看到這樣的機器:友好的,像星球大戰中的C-3PO;邪惡的,如終結者。強人工智慧現在還只存在於電影和科幻小說中,原因不難理解,我們還沒法實現它們,至少目前還不行。
我們目前能實現的,一般被稱為「弱人工智慧」(Narrow AI)。弱人工智慧是能夠與人一樣,甚至比人更好地執行特定任務的技術。例如,Pinterest上的圖像分類;或者Facebook的人臉識別。
這些是弱人工智慧在實踐中的例子。這些技術實現的是人類智能的一些具體的局部。但它們是如何實現的?這種智能是從何而來?這就帶我們來到同心圓的裡面一層,機器學習。
| 機器學習—— 一種實現人工智慧的方法
人工智慧、機器學習和深度學習之間的區別和聯系
機器學習最基本的做法,是使用演算法來解析數據、從中學習,然後對真實世界中的事件做出決策和預測。與傳統的為解決特定任務、硬編碼的軟體程序不同,機器學習是用大量的數據來「訓練」,通過各種演算法從數據中學習如何完成任務。
機器學習直接來源於早期的人工智慧領域。傳統演算法包括決策樹學習、推導邏輯規劃、聚類、強化學習和貝葉斯網路等等。眾所周知,我們還沒有實現強人工智慧。早期機器學習方法甚至都無法實現弱人工智慧。
機器學習最成功的應用領域是計算機視覺,雖然也還是需要大量的手工編碼來完成工作。人們需要手工編寫分類器、邊緣檢測濾波器,以便讓程序能識別物體從哪裡開始,到哪裡結束;寫形狀檢測程序來判斷檢測對象是不是有八條邊;寫分類器來識別字母「ST-O-P」。使用以上這些手工編寫的分類器,人們總算可以開發演算法來感知圖像,判斷圖像是不是一個停止標志牌。
這個結果還算不錯,但並不是那種能讓人為之一振的成功。特別是遇到雲霧天,標志牌變得不是那麼清晰可見,又或者被樹遮擋一部分,演算法就難以成功了。這就是為什麼前一段時間,計算機視覺的性能一直無法接近到人的能力。它太僵化,太容易受環境條件的干擾。
隨著時間的推進,學習演算法的發展改變了一切。
| 深度學習——一種實現機器學習的技術
人工智慧、機器學習和深度學習之間的區別和聯系
人工神經網路(Artificial Neural Networks)是早期機器學習中的一個重要的演算法,歷經數十年風風雨雨。神經網路的原理是受我們大腦的生理結構——互相交叉相連的神經元啟發。但與大腦中一個神經元可以連接一定距離內的任意神經元不同,人工神經網路具有離散的層、連接和數據傳播的方向。
例如,我們可以把一幅圖像切分成圖像塊,輸入到神經網路的第一層。在第一層的每一個神經元都把數據傳遞到第二層。第二層的神經元也是完成類似的工作,把數據傳遞到第三層,以此類推,直到最後一層,然後生成結果。
每一個神經元都為它的輸入分配權重,這個權重的正確與否與其執行的任務直接相關。最終的輸出由這些權重加總來決定。
我們仍以停止(Stop)標志牌為例。將一個停止標志牌圖像的所有元素都打碎,然後用神經元進行「檢查」:八邊形的外形、救火車般的紅顏色、鮮明突出的字母、交通標志的典型尺寸和靜止不動運動特性等等。神經網路的任務就是給出結論,它到底是不是一個停止標志牌。神經網路會根據所有權重,給出一個經過深思熟慮的猜測——「概率向量」。
這個例子里,系統可能會給出這樣的結果:86%可能是一個停止標志牌;7%的可能是一個限速標志牌;5%的可能是一個風箏掛在樹上等等。然後網路結構告知神經網路,它的結論是否正確。
即使是這個例子,也算是比較超前了。直到前不久,神經網路也還是為人工智慧圈所淡忘。其實在人工智慧出現的早期,神經網路就已經存在了,但神經網路對於「智能」的貢獻微乎其微。主要問題是,即使是最基本的神經網路,也需要大量的運算。神經網路演算法的運算需求難以得到滿足。
不過,還是有一些虔誠的研究團隊,以多倫多大學的Geoffrey Hinton為代表,堅持研究,實現了以超算為目標的並行演算法的運行與概念證明。但也直到GPU得到廣泛應用,這些努力才見到成效。
我們回過頭來看這個停止標志識別的例子。神經網路是調制、訓練出來的,時不時還是很容易出錯的。它最需要的,就是訓練。需要成百上千甚至幾百萬張圖像來訓練,直到神經元的輸入的權值都被調製得十分精確,無論是否有霧,晴天還是雨天,每次都能得到正確的結果。
只有這個時候,我們才可以說神經網路成功地自學習到一個停止標志的樣子;或者在Facebook的應用里,神經網路自學習了你媽媽的臉;又或者是2012年吳恩達(Andrew Ng)教授在Google實現了神經網路學習到貓的樣子等等。
吳教授的突破在於,把這些神經網路從基礎上顯著地增大了。層數非常多,神經元也非常多,然後給系統輸入海量的數據,來訓練網路。在吳教授這里,數據是一千萬YouTube視頻中的圖像。吳教授為深度學習(deep learning)加入了「深度」(deep)。這里的「深度」就是說神經網路中眾多的層。
現在,經過深度學習訓練的圖像識別,在一些場景中甚至可以比人做得更好:從識別貓,到辨別血液中癌症的早期成分,到識別核磁共振成像中的腫瘤。Google的AlphaGo先是學會了如何下圍棋,然後與它自己下棋訓練。它訓練自己神經網路的方法,就是不斷地與自己下棋,反復地下,永不停歇。
| 深度學習,給人工智慧以璀璨的未來
深度學習使得機器學習能夠實現眾多的應用,並拓展了人工智慧的領域范圍。深度學習摧枯拉朽般地實現了各種任務,使得似乎所有的機器輔助功能都變為可能。無人駕駛汽車,預防性醫療保健,甚至是更好的電影推薦,都近在眼前,或者即將實現。
人工智慧就在現在,就在明天。有了深度學習,人工智慧甚至可以達到我們暢想的科幻小說一般。你的C-3PO我拿走了,你有你的終結者就好了。
④ 人工智慧,機器學習和深度學習的區別
人工智慧:是計算機科學的一個分支,它企圖了解智能的實質,並生產出一種新的能內以人類智能相似的方式做出容反應的智能機器,該領域的研究包括機器人、語言識別、圖像識別、自然語言處理和專家系統等。
機器學習:是一門多領域交叉學科,涉及概率論、統計學、逼近論、凸分析、演算法復雜度理論等多門學科。
深度學習:有了深度學習,機器學習才有了許多實際的應用,它還拓展了AI的整體范圍。 深度學習將任務分拆,使得各種類型的機器輔助變成可能。
光環大數據的人工智慧培訓對這幾個學科有深入的講解,可以去了解下
⑤ 人工智慧,機器學習和深度學習的區別是什麼
這三個概念比較抽象,現在來用通俗的方式解釋一下。
通過一個經典的例子來解釋人工智慧、機器學習和深度學習之間的區別:比較蘋果和橙子。
1、人工智慧
從廣義上講,人工智慧描述一種機器與周圍世界交互的各種方式。通過先進的、像人類一樣的智能——軟體和硬體結合的結果——一台人工智慧機器或設備就可以模仿人類的行為或像人一樣執行任務。
2、機器學習
機器學習是人工智慧的一種途徑或子集,它強調「學習」而不是計算機程序。一台機器使用復雜的演算法來分析大量的數據,識別數據中的模式,並做出一個預測——不需要人在機器的軟體中編寫特定的指令。在錯誤地將奶油泡芙當成橙子之後,系統的模式識別會隨著時間的推移而不斷改進,因為它會像人一樣從錯誤中吸取教訓並糾正自己。
通過機器學習,一個系統可以從自身的錯誤中學習來提高它的模式識別能力。
3、深度學習
深度學習是機器學習的一個子集,推動計算機智能取得長足進步。它用大量的數據和計算能力來模擬深度神經網路。從本質上說,這些網路模仿人類大腦的連通性,對數據集進行分類,並發現它們之間的相關性。如果有新學習的知識(無需人工干預),機器就可以將其見解應用於其他數據集。機器處理的數據越多,它的預測就越准確。
例如,一台深度學習的設備可以檢查大數據——比如通過水果的顏色、形狀、大小、成熟時間和產地——來准確判斷一個蘋果是不是青蘋果,一個橙子是不是血橙。
⑥ 人工智慧和深度學習有什麼區別和聯系呀
深度學習作為機器學習的一個分支,深度學習除了可以學習任務與特徵之間專的關聯屬外,還能從各種數據中提取到一些更加復雜的特徵,進而來學習。在網路中我們可以查到對深度學習的精確定義為「深度學習是機器學習領域中一個新的研究方向,它被引入機器學習使其更接近於最初的目標——人工智慧」。深度學習是學習樣本數據的內在規律和表示層次,這些學習過程中獲得的信息對諸如文字,圖像和聲音等數據的解釋有很大的幫助。它的最終目標是讓機器能夠像人一樣具有分析學習能力,能夠識別文字、圖像和聲音等數據。 深度學習是一個復雜的機器學習演算法,在語音和圖像識別方面取得的效果,遠遠超過先前相關技術。
所以,.top域名認為,人工智慧通過實現目標來完成不斷地進步,機器學習是實現手段,深度學習則是是其中一種方法。
⑦ 深度學習和人工智慧是什麼關系
深度學習是人工智慧的子集,是實現人工智慧的一種演算法。還有其他方法可以實現回人工智慧,比如統計答學習,專家系統或者未來尚待人類發明的演算法。
深度學習是指利用深度神經網路學習特定分布(概率論理念)從而實現人工智慧。深度神經網路是相對簡單感知機而言的。一般的感知機只有兩三層,輸入量也比較少。而深度神經網路的層數多,輸入量多。
深度神經網路早在三四十年前就被提出來了,只是受限於當時硬體計算能力,難以實現。近十年來受益於GPU運算能力的提高,還有市場對圖像處理、文字和音頻處理的需求,深度學習才成為研究熱門。
⑧ 深度學習與人工智慧有什麼區別那個更好一些呢
人工智慧(Artificial Intelligence)是一個最廣泛的概念,人工智慧的目的就是讓計算機這台機器能夠象人一樣思考,而機器學習(Machine Learning)是人工智慧的分支,專門研究計算機怎樣模擬或實現人類的學習行為,以獲取新的知識或技能,使之不斷改善自身的性能。
深度學習(Deep Learning)是一種機器學習的方法,它試圖使用包含復雜結構或由多重非線性變換構成的多個處理層(神經網路)對數據進行高層抽象的演算法。