大數據的理解正確的是
『壹』 關於大數據的來源 以下理解正確的是哪些
數據(big data)指定間范圍內用規軟體工具進行捕捉、管理處理數據集合需要新處理模式才能具更強決策力、洞察發現力流程優化能力海量、高增率化信息資產
維克托·邁爾-舍恩伯格及肯尼斯·庫克耶編寫《數據代》 數據指用隨機析(抽調查)捷徑採用所數據進行析處理數據5V特點(IBM提):Volume(量)、Velocity(高速)、Variety()、Value(低價值密度)、Veracity(真實性)
『貳』 什麼是「大數據」,如何理解「大數據」
大數據的定義。大數據,又稱巨量資料,指的是所涉及的數據資料量規模巨大到無法通過人腦甚至主流軟體工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。
『叄』 如何正確認識「大數據」
大數據是指「無法用現有的軟體工具提取、存儲、搜索、共享、分析和處理的海量的、復雜的數據集合。」業界通常用 Volume、Variety、Value、Velocity來概括其特徵。
大數據的價值可以概括為「資源優化配置」。社交網路的通達更是彰顯了其價值,我們從數據中觀察到人類社會的行為模式,從龐雜的數據背後挖掘、分析用戶的行為習慣和喜好,提升產品和服務,有針對性地調整和優化自身。
『肆』 對大數據的理解,哪些是正確的
在麥肯錫全球研究所給出的定義中指出:大數據即是一種規模大到在獲取,存儲,管理,分析方面大大超出了傳統資料庫軟體工具能力范圍的數據集合。簡單而言大數據是數據多到爆表。大數據的單位一般以PB衡量。那麼PB是多大呢?1GB=1024MB ,1PB=1024GB才足以稱為大數據。
其次,大數據具有什麼樣的特點和結構呢?
大數據從整體上看分為四個特點,
第一,大量。
衡量單位PB級別,存儲內容多。
第二,高速。
大數據需要在獲取速度和分析速度上要及時迅速。保證在短時間內更多的人接收到信息。
第二,多樣。
數據的來源是各種渠道上獲取的,有文本數據,圖片數據,視頻數據等。因此數據是多種多樣的。
第三,價值。
大數據不僅僅擁有本身的信息價值,還擁有商業價值。大數據在結構上還分為:結構化,半結構化,非結構化。結構化簡單來講是資料庫,是由二維表來邏輯表達和實現的數據。非結構化即數據結構不規則或不完整,沒有預定義的數據模型。由人類產生的數據大部分是非結構化數據。
那我們身邊有哪些東西是大數據呢?
在生產生活中常見的有電信數據:通話數據、簡訊數據、手機瀏覽數據。銀行數據,微信聊天數據等。
最後,大數據能做什麼?
人們的生活離不開它,因為他在日常生活中發揮的作用逐漸加強。例如:用戶畫像,幫助人們制定個性化的需求,知識圖譜。人工智慧例如:谷歌的「阿爾法狗」在圍棋大賽中贏得、阿里巴巴的ET、網路的無人駕駛汽車等。數字貨幣,物聯網等。
『伍』 大數據的本質是什麼
從本質上講,大數據是指按照一定的組織結構連接起來的數據,是非常簡單而且直接的事物,但是從現象上分析,大數據所呈現出來的狀態復雜多樣,這是因為現象是由觀察角度決定的。
大數據(big data),指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。
從技術上看,大數據與雲計算的關系就像一枚硬幣的正反面一樣密不可分。大數據必然無法用單台的計算機進行處理,必須採用分布式架構。
它的特色在於對海量數據進行分布式數據挖掘。但它必須依託雲計算的分布式處理、分布式資料庫和雲存儲、虛擬化技術。
(5)大數據的理解正確的是擴展閱讀:
想要系統的認知大數據,必須要全面而細致的分解它,著手從三個層面來展開:
第一層面是理論:
理論是認知的必經途徑,也是被廣泛認同和傳播的基線。在這里從大數據的特徵定義理解行業對大數據的整體描繪和定性;從對大數據價值的探討來深入解析大數據的珍貴所在;洞悉大數據的發展趨勢;從大數據隱私這個特別而重要的視角審視人和數據之間的長久博弈。
第二層面是技術:
技術是大數據價值體現的手段和前進的基石。在這里分別從雲計算、分布式處理技術、存儲技術和感知技術的發展來說明大數據從採集、處理、存儲到形成結果的整個過程。
第三層面是實踐:
實踐是大數據的最終價值體現。在這里分別從互聯網的大數據,政府的大數據,企業的大數據和個人的大數據四個方面來描繪大數據已經展現的美好景象及即將實現的藍圖。