大數據與電網規劃應用
㈠ 大數據在電力行業的應用前景有哪些
藉助大數據技術,對電網運行的實時數據和歷史數據進行深層挖掘分析,可掌握電網的發展和運行規律,優化電網規劃,實現對電網運行狀態的全局掌控和對系統資源的優化控制,提高電網的經濟性、安全性和可靠性。基於天氣數據、環境數據、輸變電設備監控數據,可實現動態定容、提高輸電線路利用率,也可提高輸變電設備運檢效率與運維管理水平;基於WAMS數據、調度數據和模擬計算歷史數據,分析電網安全穩定性的時空關聯特性,建立電網知識庫,在電網出現擾動後,快速預測電網的運行穩定性,並及時採取措施,可有效提高電網的安全穩定性。
㈡ 電力行業如何應用大數據
挑戰中見需求: 質量較低、共享不暢、防禦脆弱、基礎不牢,對於這些電力行業推進大數據的困擾,電信行業是不是也有似曾相識的感覺?這些問題中的一部分,電信業同樣需要深思;還有一些問題,則恰恰是電信業的長處,是電信業推進電力行業信息化的機遇。 數據質量較低,數據管控能力不強。大數據時代,數據質量的高低、數據管控能力的強弱直接影響了數據分析的准確性和實時性。目前,電力行業數據在可獲取的顆粒程度,數據獲取的及時性、完整性、一致性等方面的表現均不盡如人意,數據源的唯一性、及時性和准確性急需提升,部分數據尚需手動輸入,採集效率和准確度還有所欠缺,行業中企業缺乏完整的數據管控策略、組織以及管控流程。 如何從海量數據中提取有價值的信息?這也是電信業面臨的問題。有觀點認為,可以用智能信息基礎設施替換復雜的孤立的資料庫,讓企業能夠在需要時捕捉、存儲信息。也有觀點認為,可以倚靠軟體的處理能力來甄別垃圾數據和有價值數據。究竟哪種方式更為有效,目前仍無定論。而無論哪種情況,都需要制定一個數據採集的標准,在時間、精度上進行規范,從而為後續的數據分析打好基礎。 數據共享不暢,數據集成度不高。大數據技術的本質是從關聯復雜的數據中挖掘知識,提升數據價值,單一業務、類型的數據即使體量再大,缺乏共享集成,其價值就會大打折扣。目前,電力行業缺乏行業層面的數據模型定義與主數據管理,各單位數據口徑不一致。行業中存在較為嚴重的數據壁壘,業務鏈條間也尚未實現充分的數據共享,數據重復存儲的現象較為突出。 打破企業的門戶之見,在行業中建立一個資源池,讓使用者可以按需獲取數據資源。從電信業的角度來看,現在,電信運營商之間的合作在不斷推進,例如,運營商開發了融合的手機游戲計費平台;在北京電信網上營業廳微信平台上,用戶不僅可以自助查詢電信業務,還能查詢聯通和移動業務的使用費,這樣共享數據資源的經驗也可在大數據的應用過程中加以推廣。 防禦能力不足,信息安全面臨挑戰。電力大數據由於涉及眾多電力用戶的隱私,對信息安全也提出了更高的要求。電力企業地域覆蓋范圍極廣,各類防護體系建設不平衡,信息安全水平不一致,特別是偏遠地區單位防護體系尚未全面建立,安全性有待提高。行業中企業的安全防護手段和關鍵防護措施也需要進一步加強,從目前的被動防禦向多層次、主動防禦轉變。 建立與大數據相適應的安全和隱私保護機制,通過技術手段和加強企業自律來保證數據的安全。 承載能力不足,基礎設施亟待完善。電力數據儲存時間要求以及海量電力數據的爆發式增長對IT基礎設施提出了更高的要求。目前,電力企業大多已建成一體化企業級信息集成平台,能夠滿足日常業務的處理要求,但其信息網路傳輸能力、數據存儲能力、數據處理能力、數據交換能力、數據展現能力以及數據互動能力都無法滿足電力大數據的要求,尚需進一步加強。 在這方面,電力行業和電信業各有優勢。盡管電力行業也在進行寬頻建設以及智慧社區的建設,但是,所謂術業有專攻,在IT基礎設施尤其是網路基礎設施上,電信業在運維、計費等方面有著得天獨厚的優勢。同時,在數據中心的建設上,電力行業對以電能為代表的能耗問題又有著豐富的經驗。因此,兩個行業不妨加強合作,實現共贏。 相關人才欠缺,專業人員供應不足。大數據是一個嶄新的事業,電力大數據的發展需要新型的專業技術人員,例如大數據處理系統管理員、大數據處理平台開發人員、數據分析員和數據科學家等。而當前行業內外此類技術人員的缺乏將會成為影響電力大數據發展的一個重要因素。 加強大數據人才的培養,鼓勵企業內部在大數據領域的創新。
㈢ 電網企業大數據分析有什麼作用
為了順應能源革命和數字革命融合發展趨勢,積極實現「三型兩網、世界一專流」戰略目標,億信華屬辰提出了電網自動化報表管理方案,來幫助國家電力部門來實現統計報表自動生成率100%。億信華辰是智能數據全生命周期產品與服務提供商,提供數據採集、數據存儲、數據治理、數據分析產品與服務。電網企業進行大數據分析後能實現以下目標:
1、建設數據集市,實現數據充分融合,報表數據統一從數據集市輸出,保證各專業報表輸出重疊部分能夠保持一致,消除信息孤島,報表對內對外統一提供。
2、在保證基礎報表管理的基礎上,實現電網業務平台化支撐,建設數據可視化分析、自主分析、智能分析等等,助力公司逐步實現報表自動化,切實推進基層減負。
㈣ 大數據在電力行業的應用前景有哪些
我們首先要先了解清楚什麼是大數據?大數據是基於互聯網的定義,而大數據技術主要處理「涌現」性的數據。
不是「大量數據」被稱為大數據
但是,大功率數據在這個方向是否有未來呢?我認為未來是有的。
首先,大數據不使用「大數據」的概念,而是物聯網+雲+數據處理的綜合概念。
其次,對電力數據的分析也在不斷發展,學習大數據處理技術,恢復電力數據也有許多優點。
在不久的未來,物聯網和智能電網高度發達的時候,店裡大數據是非常必要的。
㈤ 大數據在電力行業的應用前景有哪些
電力大數據的發展也需要一些關鍵技術的支撐,(1)大數據傳輸及存儲技術:電力系統各個環節的運行數據及設備狀態在線監測數據將會帶來海量數據傳輸和存儲問題(2)實時數據分析及處理技術:在未來的電力系統環境中,從發電、輸變電環節,到用電環節,都需要實時數據處理,藉助電力大數據的分析技術可以從電力系統的海量數據中找出潛在的模態與規律,為決策人員提供決策支持。(3)大數據展示技術:包括可視化技術、空間信息流展示技術、歷史流展示技術等.
目前,電力大數據應用場景主要在以下方面:
(1)規劃—提升負荷 預測能力。通過對大數據的分析,利用數據挖掘技術,更准確地掌握用電負荷的分布和變化規律,提高中長期負荷的預測准確度。
(2)建設—提升現場安全管理能力。對現場照片進行批量比對分析,利用分布式存儲、並行計算、模式識別等技術,掌握施工現場的安全隱患,或者核查安全整改措施的落實情況。
(3)運行—提升新能源調度管理能力。利用機器學習、模式識別等多維分析預測技術,分析新能源的出力與風速、光照、溫度等氣象因素的關聯關系,更准確地對新能源的發電能力進行預測和管理。
(4)檢修—提升狀態檢修管理能力。研究消缺、檢修、運行工況、氣象條件等因素對設備狀態的影響,以及設備運行的風險水平,利用並行計算等技術實現檢修策略優化,指導狀態檢修的深入開展。
(5)營銷—提升對用電行為的分析能力。擴展用電採集的范圍和頻次,利用聚類模型等挖掘手段,開展對用電行為特徵的深入分析,並實施區別化的用戶管理策略。
(6)運監—提升業務關聯分析能力。利用流式計算、可視化和並行處理等技術,實現全方位在線監測、分析、計算。
前景:
一、宏觀經濟形勢評價與預測
二、服務電力企業、電力用戶;1.用戶能耗分析及用電優化;2.用電信息徵信體系服務;
㈥ > 大數據如何運用到電力系統中
大數據可以通過雲伺服器,進行數據的共享,可以實現移動終端實時數據的查看