大數據挖掘方法有哪些

謝邀。

大數據挖掘的方法:

  • 神經網路方法

神經網路由於本身良好的魯棒性、自組織自適應性、並行處理、分布存儲和高度容錯等特性非常適合解決數據挖掘的問題,因此近年來越來越受到人們的關注。


  • 遺傳演算法

遺傳演算法是一種基於生物自然選擇與遺傳機理的隨機搜索演算法,是一種仿生全局優化方法。遺傳演算法具有的隱含並行性、易於和其它模型結合等性質使得它在數據挖掘中被加以應用。


  • 決策樹方法

決策樹是一種常用於預測模型的演算法,它通過將大量數據有目的分類,從中找到一些有價值的,潛在的信息。它的主要優點是描述簡單,分類速度快,特別適合大規模的數據處理。


  • 粗集方法

粗集理論是一種研究不精確、不確定知識的數學工具。粗集方法有幾個優點:不需要給出額外信息;簡化輸入信息的表達空間;演算法簡單,易於操作。粗集處理的對象是類似二維關系表的信息表。


  • 覆蓋正例排斥反例方法

它是利用覆蓋所有正例、排斥所有反例的思想來尋找規則。首先在正例集合中任選一個種子,到反例集合中逐個比較。與欄位取值構成的選擇子相容則捨去,相反則保留。按此思想循環所有正例種子,將得到正例的規則(選擇子的合取式)。


  • 統計分析方法

在資料庫欄位項之間存在兩種關系:函數關系和相關關系,對它們的分析可採用統計學方法,即利用統計學原理對資料庫中的信息進行分析。可進行常用統計、回歸分析、相關分析、差異分析等。


  • 模糊集方法

即利用模糊集合理論對實際問題進行模糊評判、模糊決策、模糊模式識別和模糊聚類分析。系統的復雜性越高,模糊性越強,一般模糊集合理論是用隸屬度來刻畫模糊事物的亦此亦彼性的。

㈡ 急用!!!數據挖掘的六種常用演算法和技術分別是什麼

分類和回歸
關聯規則
聚類分析
孤立點分析
演變分析

㈢ 列哪些演算法可以應用於大數據挖掘

數據挖掘演算法都是可以用於大數據挖掘,大數據簡單來說只是說明數據量很回大,一般指TB級別以上的,一台答伺服器無法處理,需要分布式系統來處理。
其中,數據挖掘經典十大演算法為:C4.5,K-Means,SVM,Apriori,EM,PageRank,AdaBoost,KNN,NB和CART。
常見的分布式計算有Hadoop Spark等,如果要實時計算的,一般用Storm什麼的。

㈣ 大數據常用演算法有哪些

made it," sai

㈤ 需要掌握哪些大數據演算法

不僅僅是選中的十大演算法,其實參加評選的18種演算法,實際上隨便拿出一種來都可以稱得上是經典演算法,它們在數據挖掘領域都產生了極為深遠的影響。
1.C4.5
C4.5演算法是機器學習演算法中的一種分類決策樹演算法,其核心演算法是ID3演算法.C4.5演算法繼承了ID3演算法的優點,並在以下幾方面對ID3演算法進行了改進:
1)用信息增益率來選擇屬性,克服了用信息增益選擇屬性時偏向選擇取值多的屬性的不足;
2)在樹構造過程中進行剪枝;
3)能夠完成對連續屬性的離散化處理;
4)能夠對不完整數據進行處理。
C4.5演算法有如下優點:產生的分類規則易於理解,准確率較高。其缺點是:在構造樹的過程中,需要對數據集進行多次的順序掃描和排序,因而導致演算法的低效。
2.Thek-meansalgorithm即K-Means演算法
k-meansalgorithm演算法是一個聚類演算法,把n的對象根據他們的屬性分為k個分割,k 3.Supportvectormachines
支持向量機,英文為SupportVectorMachine,簡稱SV機(論文中一般簡稱SVM)。它是一種監督式學習的方法,它廣泛的應用於統計分類以及回歸分析中。支持向量機將向量映射到一個更高維的空間里,在這個空間里建立有一個最大間隔超平面。在分開數據的超平面的兩邊建有兩個互相平行的超平面。分隔超平面使兩個平行超平面的距離最大化。假定平行超平面間的距離或差距越大,分類器的總誤差越小。一個極好的指南是C.J.CBurges的《模式識別支持向量機指南》。vanderWalt和Barnard將支持向量機和其他分類器進行了比較。
4.TheApriorialgorithm
Apriori演算法是一種最有影響的挖掘布爾關聯規則頻繁項集的演算法。其核心是基於兩階段頻集思想的遞推演算法。該關聯規則在分類上屬於單維、單層、布爾關聯規則。在這里,所有支持度大於最小支持度的項集稱為頻繁項集,簡稱頻集。
5.最大期望(EM)演算法
在統計計算中,最大期望(EM,Expectation–Maximization)演算法是在概率(probabilistic)模型中尋找參數最大似然估計的演算法,其中概率模型依賴於無法觀測的隱藏變數(LatentVariabl)。最大期望經常用在機器學習和計算機視覺的數據集聚(DataClustering)領域。
6.PageRank
PageRank是Google演算法的重要內容。2001年9月被授予美國專利,專利人是Google創始人之一拉里·佩奇(LarryPage)。因此,PageRank里的page不是指網頁,而是指佩奇,即這個等級方法是以佩奇來命名的。
PageRank根據網站的外部鏈接和內部鏈接的數量和質量倆衡量網站的價值。PageRank背後的概念是,每個到頁面的鏈接都是對該頁面的一次投票,被鏈接的越多,就意味著被其他網站投票越多。這個就是所謂的「鏈接流行度」——衡量多少人願意將他們的網站和你的網站掛鉤。PageRank這個概念引自學術中一篇論文的被引述的頻度——即被別人引述的次數越多,一般判斷這篇論文的權威性就越高。
7.AdaBoost
Adaboost是一種迭代演算法,其核心思想是針對同一個訓練集訓練不同的分類器(弱分類器),然後把這些弱分類器集合起來,構成一個更強的最終分類器(強分類器)。其演算法本身是通過改變數據分布來實現的,它根據每次訓練集之中每個樣本的分類是否正確,以及上次的總體分類的准確率,來確定每個樣本的權值。將修改過權值的新數據集送給下層分類器進行訓練,最後將每次訓練得到的分類器最後融合起來,作為最後的決策分類器。
8.kNN:k-nearestneighborclassification
K最近鄰(k-NearestNeighbor,KNN)分類演算法,是一個理論上比較成熟的方法,也是最簡單的機器學習演算法之一。該方法的思路是:如果一個樣本在特徵空間中的k個最相似(即特徵空間中最鄰近)的樣本中的大多數屬於某一個類別,則該樣本也屬於這個類別。
9.NaiveBayes
在眾多的分類模型中,應用最為廣泛的兩種分類模型是決策樹模型(DecisionTreeModel)和樸素貝葉斯模型(NaiveBayesianModel,NBC)。樸素貝葉斯模型發源於古典數學理論,有著堅實的數學基礎,以及穩定的分類效率。同時,NBC模型所需估計的參數很少,對缺失數據不太敏感,演算法也比較簡單。理論上,NBC模型與其他分類方法相比具有最小的誤差率。但是實際上並非總是如此,這是因為NBC模型假設屬性之間相互獨立,這個假設在實際應用中往往是不成立的,這給NBC模型的正確分類帶來了一定影響。在屬性個數比較多或者屬性之間相關性較大時,NBC模型的分類效率比不上決策樹模型。而在屬性相關性較小時,NBC模型的性能最為良好。
10.CART:分類與回歸樹
CART,。在分類樹下面有兩個關鍵的思想。第一個是關於遞歸地劃分自變數空間的想法;第二個想法是用驗證數據進行剪枝。

㈥ 大數據挖掘方法有哪些

方法1.Analytic Visualizations(可視化分析)


無論是日誌數據分析專家還是普通用戶,數據可視化都是數據分析工具的最基本要求。可視化可以直觀地顯示數據,讓數據自己說話,讓聽眾看到結果。


方法2.Data Mining Algorithms(數據挖掘演算法)


如果說可視化用於人們觀看,那麼數據挖掘就是給機器看的。集群、分割、孤立點分析和其他演算法使我們能夠深入挖掘數據並挖掘價值。這些演算法不僅要處理大量數據,還必須盡量縮減處理大數據的速度。


方法3.Predictive Analytic Capabilities(預測分析能力)


數據挖掘使分析師可以更好地理解數據,而預測分析則使分析師可以根據可視化分析和數據挖掘的結果做出一些預測性判斷。


方法4.semantic engine(語義引擎)


由於非結構化數據的多樣性給數據分析帶來了新挑戰,因此需要一系列工具來解析,提取和分析數據。需要將語義引擎設計成從“文檔”中智能地提取信息。


方法5.Data Quality and Master Data Management(數據質量和主數據管理)


數據質量和數據管理是一些管理方面的最佳實踐。通過標准化流程和工具處理數據可確保獲得預定義的高質量分析結果。


關於大數據挖掘方法有哪些,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。

㈦ 數據挖掘的常用方法都有哪些

在數據分析中,數據挖掘工作是一個十分重要的工作,可以說,數據挖掘工作占據數據分析工作的時間將近一半,由此可見數據挖掘的重要性,要想做好數據挖掘工作需要掌握一些方法,那麼數據挖掘的常用方法都有哪些呢?下面就由小編為大家解答一下這個問題。
首先給大家說一下神經網路方法。神經網路是模擬人類的形象直覺思維,在生物神經網路研究的基礎上,根據生物神經元和神經網路的特點,通過簡化、歸納、提煉總結出來的一類並行處理網路,利用其非線性映射的思想和並行處理的方法,用神經網路本身結構來表達輸入和輸出的關聯知識。神經網路方法在數據挖掘中十分常見。
然後給大家說一下粗糙集方法。粗糙集理論是一種研究不精確、不確定知識的數學工具。粗糙集處理的對象是類似二維關系表的信息表。目前成熟的關系資料庫管理系統和新發展起來的數據倉庫管理系統,為粗糙集的數據挖掘奠定了堅實的基礎。粗糙集理論能夠在缺少先驗知識的情況下,對數據進行分類處理。在該方法中知識是以信息系統的形式表示的,先對信息系統進行歸約,再從經過歸約後的知識庫抽取得到更有價值、更准確的一系列規則。因此,基於粗糙集的數據挖掘演算法實際上就是對大量數據構成的信息系統進行約簡,得到一種屬性歸約集的過程,最後抽取規則。
而決策樹方法也是數據挖掘的常用方法之一。決策樹是一種常用於預測模型的演算法,它通過一系列規則將大量數據有目的分類,從中找到一些有價值的、潛在的信息。它的主要優點是描述簡單,分類速度快,易於理解、精度較高,特別適合大規模的數據處理,在知識發現系統中應用較廣。它的主要缺點是很難基於多個變數組合發現規則。在數據挖掘中,決策樹常用於分類。
最後給大家說的是遺傳演算法。遺傳演算法是一種基於生物自然選擇與遺傳機理的隨機搜索演算法。數據挖掘是從大量數據中提取人們感興趣的知識,這些知識是隱含的、事先未知的、潛在有用的信息。因此,許多數據挖掘問題可以看成是搜索問題,資料庫或者數據倉庫為搜索空間,挖掘演算法是搜索策略。
上述的內容就是我們為大家講解的數據挖掘工作中常用的方法了,數據挖掘工作常用的方法就是神經網路方法、粗糙集方法、決策樹方法、遺傳演算法,掌握了這些方法才能夠做好數據挖掘工作。

㈧ 三種經典的數據挖掘演算法

演算法,可以說是很多技術的核心,而數據挖掘也是這樣的。數據挖掘中有很多的演算法,正是這些演算法的存在,我們的數據挖掘才能夠解決更多的問題。如果我們掌握了這些演算法,我們就能夠順利地進行數據挖掘工作,在這篇文章我們就給大家簡單介紹一下數據挖掘的經典演算法,希望能夠給大家帶來幫助。
1.KNN演算法
KNN演算法的全名稱叫做k-nearest neighbor classification,也就是K最近鄰,簡稱為KNN演算法,這種分類演算法,是一個理論上比較成熟的方法,也是最簡單的機器學習演算法之一。該方法的思路是:如果一個樣本在特徵空間中的k個最相似,即特徵空間中最鄰近的樣本中的大多數屬於某一個類別,則該樣本也屬於這個類別。KNN演算法常用於數據挖掘中的分類,起到了至關重要的作用。
2.Naive Bayes演算法
在眾多的分類模型中,應用最為廣泛的兩種分類模型是決策樹模型(Decision Tree Model)和樸素貝葉斯模型(Naive Bayesian Model,NBC)。樸素貝葉斯模型發源於古典數學理論,有著堅實的數學基礎,以及穩定的分類效率。同時,NBC模型所需估計的參數很少,對缺失數據不太敏感,演算法也比較簡單。理論上,NBC模型與其他分類方法相比具有最小的誤差率。但是實際上並非總是如此,這是因為NBC模型假設屬性之間相互獨立,這個假設在實際應用中往往是不成立的,這給NBC模型的正確分類帶來了一定影響。在屬性個數比較多或者屬性之間相關性較大時,NBC模型的分類效率比不上決策樹模型。而在屬性相關性較小時,NBC模型的性能最為良好。這種演算法在數據挖掘工作使用率還是挺高的,一名優秀的數據挖掘師一定懂得使用這一種演算法。
3.CART演算法
CART, 也就是Classification and Regression Trees。就是我們常見的分類與回歸樹,在分類樹下面有兩個關鍵的思想。第一個是關於遞歸地劃分自變數空間的想法;第二個想法是用驗證數據進行剪枝。這兩個思想也就決定了這種演算法的地位。
在這篇文章中我們給大家介紹了關於KNN演算法、Naive Bayes演算法、CART演算法的相關知識,其實這三種演算法在數據挖掘中占據著很高的地位,所以說如果要從事數據挖掘行業一定不能忽略這些演算法的學習。

㈨ 大數據挖掘的演算法有哪些

數據挖掘本質還是機器學習演算法
具體可以參見《數據挖掘十大常見演算法》
常用的就是:SVM,決策樹,樸素貝葉斯,邏輯斯蒂回歸等
主要解決分類和回歸問題

㈩ 哪些演算法可以應用於大數據挖掘

基本上傳統
數據挖掘
中的演算法都可以應用,只是在大數據挖掘時需要額外考慮演算法復雜性對於數據量的關系,如果是呈指數之類的關系,就不能應用了。