⑴ 誰知道Ruo和Rnc。什麼意思 有什麼關聯

1、RnC 無線網路控制器定義 無線網路控制器(RNC,Radio Network Controller)是新興3G網路的一個關鍵網元。它是接入網的組成部分,用於提供移動性管理、呼叫處理、鏈接管理和切換機制。為了實現這些功能,RNC必須利用出色的可靠性和可預測的性能,以線速執行一整套復雜且要求苛刻的協議處理任務。 作為3G網路的重要組成部分,無線網路控制器(RNC)是流量匯集、轉換、軟硬呼叫轉移(soft and hard call handoffs)、及智能小區和分組處理的重點。無線網路控制器(RNC)的高級任務包括1) 管理用於傳輸用戶數據的無線接入載波;2) 管理和優化無線網路資源;3) 移動性控制;和4) 無線鏈路維護。 無線網路控制器(RNC)具有組幀分配(framing distribution)與選擇、加密、解密、錯誤檢查、監視、以及狀態查詢等功能。無線網路控制器(RNC)還可提供橋接功能,用於連接IP分組交換網路。無線網路控制器(RNC)不僅支持傳統的ATM AAL2(語音)和AAL5(數據)功能,而且還支持IP over ATM(IPoATM)和SONET上的數據包(POS)功能。無線用戶的高增長率對IP技術提出了更高的要求,這意味著未來平台必須要能夠同時支持IPv4和IPv6。 RNC在典型UMTS R99網路中的位置如圖二所示。注意,實際網路傳輸將取決於運營商(carrier)的情況。在R99中,RNC與節點B之間通常有一個SONET環,其功能相當於城域網(MAN)。通過分插復用器(ADM),可從SONET環提取或向SONET環加入數據流。這一拓撲結構允許多個RNC接入多個節點B,以形成具有出色靈活性的網路。 RNC網路介面參考點 無線網路控制器(RNC)可使用表1中描述的定義明確的標准介面參考點連接到接入網和核心網中的系統。 由於RNC支持各種介面和協議,因此可被視作一種異構網路設備。它必須能夠同時處理語音和數據流量,還要將這些流量路由至核心網中不同的網元。無線網路控制器(RNC)還必須能夠支持IP與ATM實現互操作,向僅支持IP的網路生成POS流量。因此,RNC必須要能夠支持廣泛的網路I/O選件,同時提供規范、轉換和路由不同網路流量所需的計算和協議處理,而且所有這些處理不能造成呼叫中斷,並要提供合適的服務質量。 介面 說明 Lub 連接節點B收發信機和無線網路控制器(RNC)。這通常可通過T-1/E-1鏈路實現,該鏈路通常集中在T-1/E-1聚合器中,通過OC-3鏈路向RNC提供流量。 Lur 用於呼叫切換的RNC到RNC連接,通常通過OC-3鏈路實現。 lu-cs RNC與電路交換語音網路之間的核心網介面。通常作為OC-12速率鏈路實施。 lu-ps RNC與分組交換數據網路之間的核心網介面。通常作為OC-12速率鏈路實施。 表1. 介面參考點 無線網路控制器(RNC)的要求 兩種有助於開發商滿足嚴格的無線網路控制器(RNC)要求的技術是ATCA和英特爾®IXP2XXX網路處理器。後者基於英特爾互聯網交換架構(英特爾IXA)和英特爾XScale®技術,專為提供高性能和低功耗而設計。 ATCAATCA是由PCI工業計算機製造商協會(PICMG)開發的一項行業計劃。該設計用於滿足網路設備製造商對平台再利用、更低成本、更快上市速度和多元靈活性的要求,以及運營商和服務提供商對降低資本和運營支出的要求。ATCA通過制定標准機箱外形、機箱內部互連、以及適合高性能、高帶寬計算和通信解決方案的平台管理介面,滿足了以上要求。如欲了解有關ATCA的更多信息,請訪問: http://www.picmg.org/newinitiative.stm 。 英特爾IXP2XXX網路處理器 IXP2XXX網路處理器提供了在任何埠上處理任何協議的靈活性;從ATM到IP網路的平穩移植能力;面向定製操作的線速處理能力;特性升級;以及新興標准支持等。此外,商業化ATCA子系統與IXP2XXX網路處理器的結合,為設計者帶來了使用標准模塊化組件構建無線網路控制器(RNC)的機會。此類設計方法的潛在優勢包括提高系統可擴展性和靈活性,在降低成本的同時進一步縮短了上市時間。 創建功能強大的無線網路控制器(RNC)數據面板系統 上圖體現了一種利用ATCA和英特爾的網路處理晶元創建功能強大的無線網路控制器(RNC)系統的方法。高級無線網路控制器(RNC)功能可以如上所述進行分區,但其它方法同樣可行。本圖表僅作為邏輯或概念範例,並非實際硬體配置的圖例。 在數據面板層,該設計使用三種基本類型的卡。無線接入網(RAN)線路卡、核心網(CN)線路卡和無線網路層(RNL)卡。無線網路層(RNL)卡支持無線網路堆棧,並執行解碼/編碼。同時還包括一個控制和應用卡。 無線接入網(RAN)線路卡和核心網(CN)線路卡主要根據載波需要,處理不同的網路介面類型。典型介麵包括T-1/E-1和OC-3。這些卡採用英特爾IXP2XXX網路處理器設計而成,支持高性能線速傳輸、切換和轉換功能,如ATM分段與重組(SAR)、點對點(PPP)協議處理、POS傳輸等。註:線路卡功能可以協同定位。一個物理卡可以作為Iub、Iur、lu-PS、以及lu-CS邏輯介面。 無線網路層(RNL)卡還可使用高性能IXP2XXX網路處理器,與3G網路聯合一起處理密集型協議處理任務。這些卡沒有通向外部的網路介面,但可作為復雜協議處理引擎,對通過無線接入網(RAN)和核心網(CN)線路卡引入的流量進行處理。無線網路層(RNL)卡還必須按照3GPP Kasumi加密演算法來進行加密處理。 無線網路層(RNL)卡是無線網路控制器(RNC)數據面板中MIP最密集的組件,其性能是決定整體系統容量和性能的關鍵。 系統性能 為了測試帶有IXP2XXX網路處理器和無線網路層(RNL)卡的ATCA外形線路卡的性能,英特爾創建了無線網路控制器(RNC)數據面板參考平台。通過採用源於UMTS 6號報告的流量模型,從而對內部性能指標進行評測(UMTS 6號報告參見 http://www.umts-forum.org/servlet/dycon/ztumts/umts/Live/en/umts/Resources_Reports_06_index) 。此模型設計了一個流量負載,旨在代表2005年典型的UMTS網路。它將語音和數據流混合在一起,後者要求每用戶具有384 Kpbs的帶寬。利用這種流量模型,一個採用IXP2800網路處理器的無線網路層(RNL)卡可以處理72,000個用戶,產生3,540厄蘭的電路交換和分組交換流量的混合負載。採用只含有電路交換語音呼叫的低要求流量模型,該卡可處理180,000個用戶。 基於這種設計的無線網路層(RNL)卡可與線路卡及其它ATCA組件相結合,以創建功能極為強大的緊湊型無線網路控制器(RNC)數據面板系統。圖5中的系統展示了一種帶有14卡插槽的標准19英寸ATCA支架。一個支架可以處理500,000個用戶的流量,並支持555 Mbps的分組交換數據吞吐率。眾多機架可以在一個電信機架中互連,從而支持更高的密度。 圖5中的系統共包含12個卡,包括備用卡,可提供電信級可靠性和穩定性。所有線路卡和無線網路層(RNL)卡均使用英特爾IXP2XXX網路處理器,以提供高性能、線速傳輸、切換和協議處理。線路卡具備支持全部廣域網介面的能力,包括從T-1/E-1到同步光纖網路(SONET)和千兆位乙太網速率。 在該範例系統中,線路卡部署於一個2+1配置中:兩個活動線路卡和一個備用線路卡。無線接入網(RAN)端有8個活動OC-3介面,還有8個額外OC-3介面用於故障切換。另外還有2個活動OC-12核心網介面和2個備用介面。線路卡符合同步光纖網路(SONET)自動保護轉換(APS)標准,以便進行故障切換。 這些卡可使用符合ATCA 3.1標準的乙太網交換結構進行互連。其中包含兩個乙太網交換卡,以支持各卡之間的各種連接選件。一種可行的替代設計方案,是使用乙太網交換機作為兩個無線網路層(RNL)卡的夾層卡。這種設計具有明顯的優勢,它可以釋放兩個節點插槽,用於創收型卡。 與替代方案相比,將ATCA和IXP2XXX網路處理器相結合,可以提供重要性能和成本節省。當前的無線網路控制器(RNC)設計通常要求多個機架的設備來支持100,000至200,000的用戶密度。範例設計可通過電信機架中的一個機架支持500,000個用戶,此舉可以顯著節省功耗成本和中央辦公室佔地面積。 設計高密度、小佔地面積無線網路控制器(RNC)數據面板 下一代無線網路控制器(RNC)是新興公共無線網的一個關鍵網元。隨著業界使用標准、模塊化網元的趨勢日益顯著,無線網路控制器(RNC)系統設計的傳統專有方案已經開始被取代。通過使用ATCA和IXP2XXX網路處理器,系統設計師可以將工業標准硬體與功能強大的、可編程網路處理晶元完美結合起來。基於這些技術的無線網路控制器(RNC)數據面板設計僅佔用很小的系統空間,便可達到非常高的密 同音字:R&C(通常又稱宮調R&B) 「R&C」是個很大的概念,它就是一個符號,剛形成的時候與現在都有挺大區別。現在的「R&C」的內涵會一直隨著後弦的音樂變化而變化,將來的每張唱片都給「 R&C」 賦予新的東西,譬如R可能代表rhythm(節奏)和revive(復興),而C更是五花八門,譬如chinese(中文)、create(創造)、cartoon(卡通)、 color(顏色) 和 COSPLAY(角色扮演)甚至是cai(「菜」的拼音)等等,後弦的《九公主》這張EP裡面就融入了許許多多這樣的年輕元素,每一首歌都是一次變化,足夠新鮮。就象《九公主》的「圓舞嘻哈」就好比後弦為大家奉上的一道新菜式:「火燒冰激淋」,圓舞曲感覺是冰激淋,而嘻哈是一團明火,點心都可以這樣做,音樂說不定也可以碰撞出火花,一個代表冷艷與幻想的3/4拍,一邊是代表火爆性格的嘻哈4/4拍,因為九公主與英倫宮廷幻想和足球都有關,公主曼妙的足球動作,用圓舞曲與嘻哈來共同詮釋最好不過了,足夠新鮮。 2、Ruo是表情.. 顯示出來是一個大拇指向下搖的圖片. 鄙視的意思

求點贊

⑵ RRC連接成功率優化有哪些好的手段

B建立成功率RNC類型KPI百分比RNC RAB建立成功率RNC RAB Establishment Success RateRAB建立成功率=(CS域RAB指派建立成功RAB數目+PS域RAB指派建立成功RAB數目)/(CS域RAB建立請求的RAB數目+PS域RAB建立請求的RAB數目)*100?ABASN.SuccEstabCSNoQueuing+RABASN.SuccEstabCSQueuing+RABASN.SuccEstabPSNoQueuing+RABASN.SuccEstabPSQueuing)/(RABASN.AttEstabCS+RABASN.AttEstabPS)307509呼叫建立特性類無線接通率小區類型KPI百分比無線接通率Radio Access Success Rate 無線接通率=RAB建立成功率*RRC連接建立成功率(業務相關)*100?RAB.SuccRabAssignEstabCS+CRAB.SuccRabAssignEstabPS)/(CRAB.AttRabAssignEstabCS+CRAB.AttRabAssignEstabPS)*(CRRC.SuccConnEstab.Conv+CRRC.SuccConnEstab.Strm+CRRC.SuccConnEstab.Intact+CRRC.SuccConnEstabl.Bgrd)/(CRRC.AttConnEstab.Conv+CRRC.AttConnEstab.Strm+CRRC.AttConnEstab.Intact+CRRC.AttConnEstabl.Bgrd) 華為的,這是呼叫建立類指標,還要其他的話說一聲,不明白的說哈,希望能幫到你

⑶ 請問通信網路中BSC與RNC得區別,謝謝啦!

BSC指的是基站控制器(Base Station Controller)。
它是基站收發台和移動交換中心之間的連接點,也為基站收發台(BTS)和移動交換中心(MSC)之間交換信息提供介面。一個基站控制器通常控制幾個基站收發台,其主要功能是進行無線信道管理、實施呼叫和通信鏈路的建立和拆除,並為本控制區內移 動台的過區切換進行控制等。
一般由以下模塊組成:
AM/CM模塊:話路交換和信息交換的中心。
BM模塊:完成呼叫處理、信令處理、無線資源管理、無線鏈路的管理和電路維護功能。
TCSM模塊:完成復用解復用及碼變換功能。
具體信息可參考移動通訊相關知識。
基站控制器(BSC):BSC控制一組基站,其任務是管理無線網路,即管理無線小區及其無線信道,無線設備的操作和維護,移動台的業務過程,並提供基站至MSC之間的介面。將有關無線控制的功能盡量的集中到BSC上來,以簡化基站的設備,這是GSM的一個特色。它的功能列表如下:
1. 無線基站的監視與管理,RBS資源由BSC控制,同時通過在話音信道上的內部軟體測試及環路測試,BSC還可監視RBS的性能。愛立信的基站採用內部軟體測試及環路測試在話音通道上對TRX進行監視。若檢測出故障,將重新配置RBS,激活備用的TRX,這樣原來的信道組保持不變。
2. 無線資源的管理,BSC為每個小區配置業務及控制信道,為了能夠准確的進行重新配置,BSC收集各種統計數據。比如損失呼叫的數量,成功與不成功的切換,每小區的業務量,無線環境等,特殊記錄功能可以跟蹤呼叫過程的所有事件,這些功能可檢測網路故障和故障設備。
3. 處理與移動台的連接,負責與移動台連接的建立和釋放,給每一路話音分配一個邏輯信道,呼叫期間,BSC對連接進行監視,移動台及收發信機測量信號強度及話音質量,測量結果傳回BSC。由BSC決定移動台及收發信機的發射功率,其宗旨是即保證好的連接質量,又將網路內的干擾降低到最小。
4. 定位和切換,切換是由BSC控制的,定位功能不斷的分析話音接續的質量,由此可作出是否應切換的決定,切換可以分為BSC內切換,MSC內BSC間的切換,MSC之間的切換。一種特殊切換稱為小區內切換,當BSC發現某連接的話音質量太低,而測量結果中又找不到更好的小區時,BSC就將連接切換到本小區內另外一個邏輯信道上,希望通話質量有所改善。切換同時可以用於平衡小區間的負載,如果一個小區內的話務量太高,而相鄰小區話務量較小,信號質量也可以接受,則會將部分通話強行切換到其它的小區上去。
5. 尋呼管理,BSC負責分配從MSC來的尋呼消息,在這一方面,它其實是MSC和MS之間的特殊的透明通道。
6. 傳輸網路的管理,BSC配置、分配並監視與RBS之間的64KBPS電路,它也直接控制RBS內的交換功能。此交換功能可以有效的使用64K的電路。
7. 碼型變換功能,將四個全速率GSM信道復用成一個64K信道的話音編碼在BSC內完成,一個PCM時隙可以傳輸4個話音連接。這一功能是由TRAU來實現的。
8. 話音編碼。
9. BSS的操作和維護,BSC負責整個BSS的操作與維護。諸如系統數據管理,軟體安裝,設備閉塞與解閉,告警處理,測試數據的採集,收發信機的測試。

RnC 無線網路控制器定義 無線網路控制器(RNC,Radio Network Controller)是新興3G網路的一個關鍵網元。它是接入網的組成部分,用於提供移動性管理、呼叫處理、鏈接管理和切換機制。為了實現這些功能,RNC必須利用出色的可靠性和可預測的性能,以線速執行一整套復雜且要求苛刻的協議處理任務。 作為3G網路的重要組成部分,無線網路控制器(RNC)是流量匯集、轉換、軟硬呼叫轉移(soft and hard call handoffs)、及智能小區和分組處理的重點。無線網路控制器(RNC)的高級任務包括1) 管理用於傳輸用戶數據的無線接入載波;2) 管理和優化無線網路資源;3) 移動性控制;和4) 無線鏈路維護。 無線網路控制器(RNC)具有組幀分配(framing distribution)與選擇、加密、解密、錯誤檢查、監視、以及狀態查詢等功能。無線網路控制器(RNC)還可提供橋接功能,用於連接IP分組交換網路。無線網路控制器(RNC)不僅支持傳統的ATM AAL2(語音)和AAL5(數據)功能,而且還支持IP over ATM(IPoATM)和SONET上的數據包(POS)功能。無線用戶的高增長率對IP技術提出了更高的要求,這意味著未來平台必須要能夠同時支持IPv4和IPv6。 RNC在典型UMTS R99網路中的位置如圖二所示。注意,實際網路傳輸將取決於運營商(carrier)的情況。在R99中,RNC與節點B之間通常有一個SONET環,其功能相當於城域網(MAN)。通過分插復用器(ADM),可從SONET環提取或向SONET環加入數據流。這一拓撲結構允許多個RNC接入多個節點B,以形成具有出色靈活性的網路。
RNC網路介面參考點 無線網路控制器(RNC)可使用表1中描述的定義明確的標准介面參考點連接到接入網和核心網中的系統。 由於RNC支持各種介面和協議,因此可被視作一種異構網路設備。它必須能夠同時處理語音和數據流量,還要將這些流量路由至核心網中不同的網元。無線網路控制器(RNC)還必須能夠支持IP與ATM實現互操作,向僅支持IP的網路生成POS流量。因此,RNC必須要能夠支持廣泛的網路I/O選件,同時提供規范、轉換和路由不同網路流量所需的計算和協議處理,而且所有這些處理不能造成呼叫中斷,並要提供合適的服務質量。 介面 說明
Lub 連接節點B收發信機和無線網路控制器(RNC)。這通常可通過T-1/E-1鏈路實現,該鏈路通常集中在T-1/E-1聚合器中,通過OC-3鏈路向RNC提供流量。
Lur 用於呼叫切換的RNC到RNC連接,通常通過OC-3鏈路實現。
lu-cs RNC與電路交換語音網路之間的核心網介面。通常作為OC-12速率鏈路實施。
lu-ps RNC與分組交換數據網路之間的核心網介面。通常作為OC-12速率鏈路實施。
表1. 介面參考點 無線網路控制器(RNC)的要求 兩種有助於開發商滿足嚴格的無線網路控制器(RNC)要求的技術是ATCA和英特爾®IXP2XXX網路處理器。後者基於英特爾互聯網交換架構(英特爾IXA)和英特爾XScale®技術,專為提供高性能和低功耗而設計。 ATCAATCA是由PCI工業計算機製造商協會(PICMG)開發的一項行業計劃。該設計用於滿足網路設備製造商對平台再利用、更低成本、更快上市速度和多元靈活性的要求,以及運營商和服務提供商對降低資本和運營支出的要求。ATCA通過制定標准機箱外形、機箱內部互連、以及適合高性能、高帶寬計算和通信解決方案的平台管理介面,滿足了以上要求。如欲了解有關ATCA的更多信息,請訪問:http://www.picmg.org/newinitiative.stm。 英特爾IXP2XXX網路處理器 IXP2XXX網路處理器提供了在任何埠上處理任何協議的靈活性;從ATM到IP網路的平穩移植能力;面向定製操作的線速處理能力;特性升級;以及新興標准支持等。此外,商業化ATCA子系統與IXP2XXX網路處理器的結合,為設計者帶來了使用標准模塊化組件構建無線網路控制器(RNC)的機會。此類設計方法的潛在優勢包括提高系統可擴展性和靈活性,在降低成本的同時進一步縮短了上市時間。 創建功能強大的無線網路控制器(RNC)數據面板系統
上圖體現了一種利用ATCA和英特爾的網路處理晶元創建功能強大的無線網路控制器(RNC)系統的方法。高級無線網路控制器(RNC)功能可以如上所述進行分區,但其它方法同樣可行。本圖表僅作為邏輯或概念範例,並非實際硬體配置的圖例。 在數據面板層,該設計使用三種基本類型的卡。無線接入網(RAN)線路卡、核心網(CN)線路卡和無線網路層(RNL)卡。無線網路層(RNL)卡支持無線網路堆棧,並執行解碼/編碼。同時還包括一個控制和應用卡。 無線接入網(RAN)線路卡和核心網(CN)線路卡主要根據載波需要,處理不同的網路介面類型。典型介麵包括T-1/E-1和OC-3。這些卡採用英特爾IXP2XXX網路處理器設計而成,支持高性能線速傳輸、切換和轉換功能,如ATM分段與重組(SAR)、點對點(PPP)協議處理、POS傳輸等。註:線路卡功能可以協同定位。一個物理卡可以作為Iub、Iur、lu-PS、以及lu-CS邏輯介面。 無線網路層(RNL)卡還可使用高性能IXP2XXX網路處理器,與3G網路聯合一起處理密集型協議處理任務。這些卡沒有通向外部的網路介面,但可作為復雜協議處理引擎,對通過無線接入網(RAN)和核心網(CN)線路卡引入的流量進行處理。無線網路層(RNL)卡還必須按照3GPP Kasumi加密演算法來進行加密處理。 無線網路層(RNL)卡是無線網路控制器(RNC)數據面板中MIP最密集的組件,其性能是決定整體系統容量和性能的關鍵。 系統性能 為了測試帶有IXP2XXX網路處理器和無線網路層(RNL)卡的ATCA外形線路卡的性能,英特爾創建了無線網路控制器(RNC)數據面板參考平台。通過採用源於UMTS 6號報告的流量模型,從而對內部性能指標進行評測(UMTS 6號報告參見http://www.umts-forum.org/servlet/dycon/ztumts/umts/Live/en/umts/Resources_Reports_06_index)。此模型設計了一個流量負載,旨在代表2005年典型的UMTS網路。它將語音和數據流混合在一起,後者要求每用戶具有384 Kpbs的帶寬。利用這種流量模型,一個採用IXP2800網路處理器的無線網路層(RNL)卡可以處理72,000個用戶,產生3,540厄蘭的電路交換和分組交換流量的混合負載。採用只含有電路交換語音呼叫的低要求流量模型,該卡可處理180,000個用戶。 基於這種設計的無線網路層(RNL)卡可與線路卡及其它ATCA組件相結合,以創建功能極為強大的緊湊型無線網路控制器(RNC)數據面板系統。圖5中的系統展示了一種帶有14卡插槽的標准19英寸ATCA支架。一個支架可以處理500,000個用戶的流量,並支持555 Mbps的分組交換數據吞吐率。眾多機架可以在一個電信機架中互連,從而支持更高的密度。 圖5中的系統共包含12個卡,包括備用卡,可提供電信級可靠性和穩定性。所有線路卡和無線網路層(RNL)卡均使用英特爾IXP2XXX網路處理器,以提供高性能、線速傳輸、切換和協議處理。線路卡具備支持全部廣域網介面的能力,包括從T-1/E-1到同步光纖網路(SONET)和千兆位乙太網速率。 在該範例系統中,線路卡部署於一個2+1配置中:兩個活動線路卡和一個備用線路卡。無線接入網(RAN)端有8個活動OC-3介面,還有8個額外OC-3介面用於故障切換。另外還有2個活動OC-12核心網介面和2個備用介面。線路卡符合同步光纖網路(SONET)自動保護轉換(APS)標准,以便進行故障切換。 這些卡可使用符合ATCA 3.1標準的乙太網交換結構進行互連。其中包含兩個乙太網交換卡,以支持各卡之間的各種連接選件。一種可行的替代設計方案,是使用乙太網交換機作為兩個無線網路層(RNL)卡的夾層卡。這種設計具有明顯的優勢,它可以釋放兩個節點插槽,用於創收型卡。 與替代方案相比,將ATCA和IXP2XXX網路處理器相結合,可以提供重要性能和成本節省。當前的無線網路控制器(RNC)設計通常要求多個機架的設備來支持100,000至200,000的用戶密度。範例設計可通過電信機架中的一個機架支持500,000個用戶,此舉可以顯著節省功耗成本和中央辦公室佔地面積。 設計高密度、小佔地面積無線網路控制器(RNC)數據面板 下一代無線網路控制器(RNC)是新興公共無線網的一個關鍵網元。隨著業界使用標准、模塊化網元的趨勢日益顯著,無線網路控制器(RNC)系統設計的傳統專有方案已經開始被取代。通過使用ATCA和IXP2XXX網路處理器,系統設計師可以將工業標准硬體與功能強大的、可編程網路處理晶元完美結合起來。基於這些技術的無線網路控制器(RNC)數據面板設計僅佔用很小的系統空間,便可達到非常高的密

整體來說,BSC是針對目前GSM網路的叫法,而RNC是針對3G網路的稱呼,都是指代基站控制器。

⑷ RNC是什麼意思,是干什麼的呀

無線網路控制器定義 無線網路控制器(RNC,Radio Network Controller)是新興3G網路的一個關鍵網元。它是接入網的組成部分,用於提供移動性管理、呼叫處理、鏈接管理和切換機制。為了實現這些功能,RNC必須利用出色的可靠性和可預測的性能,以線速執行一整套復雜且要求苛刻的協議處理任務。 作為3G網路的重要組成部分,無線網路控制器(RNC)是流量匯集、轉換、軟硬呼叫轉移(soft and hard call handoffs)、及智能小區和分組處理的重點。無線網路控制器(RNC)的高級任務包括1) 管理用於傳輸用戶數據的無線接入載波;2) 管理和優化無線網路資源;3) 移動性控制;和4) 無線鏈路維護。 無線網路控制器(RNC)具有組幀分配(framing distribution)與選擇、加密、解密、錯誤檢查、監視、以及狀態查詢等功能。無線網路控制器(RNC)還可提供橋接功能,用於連接IP分組交換網路。無線網路控制器(RNC)不僅支持傳統的ATM AAL2(語音)和AAL5(數據)功能,而且還支持IP over ATM(IPoATM)和SONET上的數據包(POS)功能。無線用戶的高增長率對IP技術提出了更高的要求,這意味著未來平台必須要能夠同時支持IPv4和IPv6。 RNC在典型UMTS R99網路中的位置如圖二所示。注意,實際網路傳輸將取決於運營商(carrier)的情況。在R99中,RNC與節點B之間通常有一個SONET環,其功能相當於城域網(MAN)。通過分插復用器(ADM),可從SONET環提取或向SONET環加入數據流。這一拓撲結構允許多個RNC接入多個節點B,以形成具有出色靈活性的網路。

⑸ 通信3G設備RNC的作用是什麼

RnC無線網路控制器定義 無線網路控制器(RNC,Radio Network Controller)是新興3G網路的一個關鍵網元。它是接入網的組成部分,用於提供移動性管理、呼叫處理、鏈接管理和切換機制。為了實現這些功能,RNC必須利用出色的可靠性和可預測的性能,以線速執行一整套復雜且要求苛刻的協議處理任務。 作為3G網路的重要組成部分,無線網路控制器(RNC)是流量匯集、轉換、軟硬呼叫轉移(soft and hard call handoffs)、及智能小區和分組處理的重點。無線網路控制器(RNC)的高級任務包括1) 管理用於傳輸用戶數據的無線接入載波;2) 管理和優化無線網路資源;3) 移動性控制;和4) 無線鏈路維護。 無線網路控制器(RNC)具有組幀分配(framing distribution)與選擇、加密、解密、錯誤檢查、監視、以及狀態查詢等功能。無線網路控制器(RNC)還可提供橋接功能,用於連接IP分組交換網路。無線網路控制器(RNC)不僅支持傳統的ATM AAL2(語音)和AAL5(數據)功能,而且還支持IP over ATM(IPoATM)和SONET上的數據包(POS)功能。無線用戶的高增長率對IP技術提出了更高的要求,這意味著未來平台必須要能夠同時支持IPv4和IPv6。 RNC在典型UMTS R99網路中的位置如圖二所示。注意,實際網路傳輸將取決於運營商(carrier)的情況。在R99中,RNC與節點B之間通常有一個SONET環,其功能相當於城域網(MAN)。通過分插復用器(ADM),可從SONET環提取或向SONET環加入數據流。這一拓撲結構允許多個RNC接入多個節點B,以形成具有出色靈活性的網路。RNC網路介面參考點 無線網路控制器(RNC)可使用表1中描述的定義明確的標准介面參考點連接到接入網和核心網中的系統。 由於RNC支持各種介面和協議,因此可被視作一種異構網路設備。它必須能夠同時處理語音和數據流量,還要將這些流量路由至核心網中不同的網元。無線網路控制器(RNC)還必須能夠支持IP與ATM實現互操作,向僅支持IP的網路生成POS流量。因此,RNC必須要能夠支持廣泛的網路I/O選件,同時提供規范、轉換和路由不同網路流量所需的計算和協議處理,而且所有這些處理不能造成呼叫中斷,並要提供合適的服務質量。 介面 說明
Lub 連接節點B收發信機和無線網路控制器(RNC)。這通常可通過T-1/E-1鏈路實現,該鏈路通常集中在T-1/E-1聚合器中,通過OC-3鏈路向RNC提供流量。
Lur 用於呼叫切換的RNC到RNC連接,通常通過OC-3鏈路實現。
lu-cs RNC與電路交換語音網路之間的核心網介面。通常作為OC-12速率鏈路實施。
lu-ps RNC與分組交換數據網路之間的核心網介面。通常作為OC-12速率鏈路實施。
表1. 介面參考點 無線網路控制器(RNC)的要求 兩種有助於開發商滿足嚴格的無線網路控制器(RNC)要求的技術是ATCA和英特爾®IXP2XXX網路處理器。後者基於英特爾互聯網交換架構(英特爾IXA)和英特爾XScale®技術,專為提供高性能和低功耗而設計。 ATCAATCA是由PCI工業計算機製造商協會(PICMG)開發的一項行業計劃。該設計用於滿足網路設備製造商對平台再利用、更低成本、更快上市速度和多元靈活性的要求,以及運營商和服務提供商對降低資本和運營支出的要求。ATCA通過制定標准機箱外形、機箱內部互連、以及適合高性能、高帶寬計算和通信解決方案的平台管理介面,滿足了以上要求。如欲了解有關ATCA的更多信息,請訪問: http://www.picmg.org/newinitiative.stm。 英特爾IXP2XXX網路處理器 IXP2XXX網路處理器提供了在任何埠上處理任何協議的靈活性;從ATM到IP網路的平穩移植能力;面向定製操作的線速處理能力;特性升級;以及新興標准支持等。此外,商業化ATCA子系統與IXP2XXX網路處理器的結合,為設計者帶來了使用標准模塊化組件構建無線網路控制器(RNC)的機會。此類設計方法的潛在優勢包括提高系統可擴展性和靈活性,在降低成本的同時進一步縮短了上市時間。 創建功能強大的無線網路控制器(RNC)數據面板系統
上圖體現了一種利用ATCA和英特爾的網路處理晶元創建功能強大的無線網路控制器(RNC)系統的方法。高級無線網路控制器(RNC)功能可以如上所述進行分區,但其它方法同樣可行。本圖表僅作為邏輯或概念範例,並非實際硬體配置的圖例。 在數據面板層,該設計使用三種基本類型的卡。無線接入網(RAN)線路卡、核心網(CN)線路卡和無線網路層(RNL)卡。無線網路層(RNL)卡支持無線網路堆棧,並執行解碼/編碼。同時還包括一個控制和應用卡。 無線接入網(RAN)線路卡和核心網(CN)線路卡主要根據載波需要,處理不同的網路介面類型。典型介麵包括T-1/E-1和OC-3。這些卡採用英特爾IXP2XXX網路處理器設計而成,支持高性能線速傳輸、切換和轉換功能,如ATM分段與重組(SAR)、點對點(PPP)協議處理、POS傳輸等。註:線路卡功能可以協同定位。一個物理卡可以作為Iub、Iur、lu-PS、以及lu-CS邏輯介面。 無線網路層(RNL)卡還可使用高性能IXP2XXX網路處理器,與3G網路聯合一起處理密集型協議處理任務。這些卡沒有通向外部的網路介面,但可作為復雜協議處理引擎,對通過無線接入網(RAN)和核心網(CN)線路卡引入的流量進行處理。無線網路層(RNL)卡還必須按照3GPP Kasumi加密演算法來進行加密處理。 無線網路層(RNL)卡是無線網路控制器(RNC)數據面板中MIP最密集的組件,其性能是決定整體系統容量和性能的關鍵。 系統性能 為了測試帶有IXP2XXX網路處理器和無線網路層(RNL)卡的ATCA外形線路卡的性能,英特爾創建了無線網路控制器(RNC)數據面板參考平台。通過採用源於UMTS 6號報告的流量模型,從而對內部性能指標進行評測(UMTS 6號報告參見 http://www.umts-forum.org/servlet/dycon/ztumts/umts/Live/en/umts/Resources_Reports_06_index)。此模型設計了一個流量負載,旨在代表2005年典型的UMTS網路。它將語音和數據流混合在一起,後者要求每用戶具有384 Kpbs的帶寬。利用這種流量模型,一個採用IXP2800網路處理器的無線網路層(RNL)卡可以處理72,000個用戶,產生3,540厄蘭的電路交換和分組交換流量的混合負載。採用只含有電路交換語音呼叫的低要求流量模型,該卡可處理180,000個用戶。 基於這種設計的無線網路層(RNL)卡可與線路卡及其它ATCA組件相結合,以創建功能極為強大的緊湊型無線網路控制器(RNC)數據面板系統。圖5中的系統展示了一種帶有14卡插槽的標准19英寸ATCA支架。一個支架可以處理500,000個用戶的流量,並支持555 Mbps的分組交換數據吞吐率。眾多機架可以在一個電信機架中互連,從而支持更高的密度。 圖5中的系統共包含12個卡,包括備用卡,可提供電信級可靠性和穩定性。所有線路卡和無線網路層(RNL)卡均使用英特爾IXP2XXX網路處理器,以提供高性能、線速傳輸、切換和協議處理。線路卡具備支持全部廣域網介面的能力,包括從T-1/E-1到同步光纖網路(SONET)和千兆位乙太網速率。 在該範例系統中,線路卡部署於一個2+1配置中:兩個活動線路卡和一個備用線路卡。無線接入網(RAN)端有8個活動OC-3介面,還有8個額外OC-3介面用於故障切換。另外還有2個活動OC-12核心網介面和2個備用介面。線路卡符合同步光纖網路(SONET)自動保護轉換(APS)標准,以便進行故障切換。 這些卡可使用符合ATCA 3.1標準的乙太網交換結構進行互連。其中包含兩個乙太網交換卡,以支持各卡之間的各種連接選件。一種可行的替代設計方案,是使用乙太網交換機作為兩個無線網路層(RNL)卡的夾層卡。這種設計具有明顯的優勢,它可以釋放兩個節點插槽,用於創收型卡。 與替代方案相比,將ATCA和IXP2XXX網路處理器相結合,可以提供重要性能和成本節省。當前的無線網路控制器(RNC)設計通常要求多個機架的設備來支持100,000至200,000的用戶密度。範例設計可通過電信機架中的一個機架支持500,000個用戶,此舉可以顯著節省功耗成本和中央辦公室佔地面積。 設計高密度、小佔地面積無線網路控制器(RNC)數據面板 下一代無線網路控制器(RNC)是新興公共無線網的一個關鍵網元。隨著業界使用標准、模塊化網元的趨勢日益顯著,無線網路控制器(RNC)系統設計的傳統專有方案已經開始被取代。通過使用ATCA和IXP2XXX網路處理器,系統設計師可以將工業標准硬體與功能強大的、可編程網路處理晶元完美結合起來。基於這些技術的無線網路控制器(RNC)數據面板設計僅佔用很小的系統空間,便可達到非常高的密
同音字:R&C(通常又稱宮調R&B)
「R&C」是個很大的概念,它就是一個符號,剛形成的時候與現在都有挺大區別。現在的「R&C」的內涵會一直隨著後弦的音樂變化而變化,將來的每張唱片都給「 R&C」 賦予新的東西,譬如R可能代表rhythm(節奏)和revive(復興),而C更是五花八門,譬如chinese(中文)、create(創造)、cartoon(卡通)、 color(顏色) 和 COSPLAY(角色扮演)甚至是cai(「菜」的拼音)等等,後弦的《九公主》這張EP裡面就融入了許許多多這樣的年輕元素,每一首歌都是一次變化,足夠新鮮。就象《九公主》的「圓舞嘻哈」就好比後弦為大家奉上的一道新菜式:「火燒冰激淋」,圓舞曲感覺是冰激淋,而嘻哈是一團明火,點心都可以這樣做,音樂說不定也可以碰撞出火花,一個代表冷艷與幻想的3/4拍,一邊是代表火爆性格的嘻哈4/4拍,因為九公主與英倫宮廷幻想和足球都有關,公主曼妙的足球動作,用圓舞曲與嘻哈來共同詮釋最好不過了,足夠新鮮。

⑹ 核心網,網路優化,無線通信有什麼區別

核心網,網路優化,無線通信有什麼區別

核心網工程師和網路優化工程師的區別

這兩個工作雖然都是針對無線方面的,但具體工作內容區別較大:

網路優化工程師主要接觸無線側,如果做前台還需要經常在外派車,並且經常需要出差,不同的系統差異較大,比如GSM、TD-SCDMA、WCDMA等.

核心網工程師,基本在機房裡,出差較少.系統間差異相對較小,比如上面提到的GSM、WCDMA以及TD-SCDMA在核心網上的差異非常小.

核心網做的是網路的核心部分,MSC MGW HLR

BSC,核心網要求對愛立信設備的一個比較完整的了解.而網路優化是主要針對建好的網路的一個優化,主要集中在無線方面,主要是BTS方面比較多.

這兩個職位各有千秋,也各有各的不足或局限的地方,關鍵在於從業者希望得到什麼,又對自己有什麼期望和定位.只要自己肯下功夫認真學習,任何一項都是可以乾的非常不錯,和有前途的.

無線、網優、接入、傳輸、核心

不說定義了,簡單說說:

無線: 無線接入,就是手機無線網路連接啊什麼的。wifi什麼的

網優: 網路優化,調整發射功率啊,角度啊什麼的,使信號更好

接入: 可以指手機接入基站(nodeB),也可以說基站接入RNC什麼的,含義很廣

傳輸: 信號傳輸、數據啊,語音啊什麼的傳輸

核心: 有核心網,廣義指的很大,SGSN、HLR什麼的,狹義就指HLR,資料庫,裡面是電話卡,sim或者uim卡,imsi什麼的信息內容,也包括你辦理的各種業務,卡類型

⑺ MSTP網路到PTN網路的優化設計 論文,誰能幫幫我啊

傳輸網:從MSTP到PTN是大勢所趨

在網路向全IP化演進的大背景下,在終端,如手機,PC已經是以IP為基礎實現各種各樣的業務接入,企業用戶已經全面使用路由器,交換機和網關,伺服器,防火牆,各種網路的業務控制也逐漸轉向IP化的條件下,傳輸網為了實現對上層業務的高效承載,從MSTP演進到PTN是大勢所趨。

PTN緣何成為傳輸網主流

首先我們從技術層面進行分析。

傳統意義上,在物理媒介層,如光纖等,和來自客戶的業務層之間存在的傳送設備的功能結構是以固定的時隙交換、波長交換或者空分交換為基礎的,如現有的設備形態,PDH,SDH/SONET,OTN,ROADM均是如此,採用固定式交換的基本前提是業務是基於PSTN時代的64Kbps基本單元,在現在分組化盛行的時代,顯然不能很好地適應,由此導致技術上傾向於採用分組交換的交換/轉發內核,同時依然符合ITU-TG.805傳送網設備功能結構的一般要求,即PTN設備。

PTN設備針對分組業務流的突發性,能夠採用統計復用的方法進行傳送,在保證各優先順序業務的CIR(Committed InformationRate)的前提下,對空閑帶寬按照優先順序和EIR(Excess InformationRate)進行合理的分配,既能滿足高優先順序業務的性能要求,又能盡可能充分共享未用帶寬,解決了TDM交換時代帶寬無法共享、無法有效支持突發業務的根本缺陷。PTN設備的分組轉發平面並沒有特立於數據網路的數據轉發平面,而是充分利用了成熟的數據二三層技術,實現設備無阻塞的數據報文轉發能力,但同時PTN設備保持了傳送網路的一般特徵。如5個9的高可用性,強大的、分層的OAM能力和可維護性,優異的同步性能,關鍵部件的1+1備份帶來的高可靠性,低於50ms的保護,端到端的QoS保證,多業務支持,強大的拓撲,業務、帶寬、節點、告警,性能的管理能力和業務安全性。

PTN設備的介面速率除了傳統的2M、155M,主要是千兆以太和萬兆以太,因此可以明顯降低每Mbit的傳送成本,並且由於技術的進步,埠密度、設備容量體積比大大增加,而耗電量明顯降低。

其次,我們對網路運營層面進行分析。

現在運營商運維的網路主要以技術類型劃分,如數據網、電信傳輸網、ATM網等,從廣義上講,每種類型都能承擔一些特定類型業務的傳送任務,但是因為每一種網路類型都是完全不同的技術和運維辦法,分割了運營商有限的人力和資金。若開通某些業務如果需要跨過不同的網路,因為網路層次很多,維護甚至業務開通都會成為麻煩的問題,因此不可能把每種網路都建好管好,但彼時如果只建一種網路就會失去提供某些應用的可能,落後於競爭對手。

現在PTN網路提供了一個性能最好,兼容以太、ATM、SDH、PDH、PPP/HDLC、幀中繼等各種技術的統一的傳送平台,消除了網路建設類型的多樣性,代之以介面類型的多樣性,原有的網路設備,如ATM交換機、以太交換機、PDH光端機,可以通過PTN網路互聯在一起,也可以被PTN的ATM介面、以太介面、PDH介面直接替換。

PTN技術的妙處在於完美地結合了數據技術與傳輸技術,來自數據方面的大容量分組交換/標簽交換技術、QoS技術,來自傳送的OAM管理、50ms保護和同步,可以使運營商的基礎網路設施獲得最大的技術優勢,增強未來快速部署新應用的靈活性和降低成本,同時可以最大程度地利用現有網路,保護運營商的已有資產。

如果將PTN的LSP/PW與SDH基於VC的高階通道和低階通道做類比聯系起來,PW就類似於低階通道,它的作用就是對客戶業務的封裝,並且作為低階的業務指示,方便在高階的層面復用,而LSP非常類似高階通道,可以承載多條PW到達同一個目的站點。對於熟悉傳送網的運維人員來講,LSP和PW可以看做是更靈活的高低階通道,該通道的帶寬是可大可小的,但是端到端的故障管理和告警,如AIS、RDI、CSF,以及性能上報都是和SDH一樣的,並且增加了丟包/時延性能檢測、測試、鎖定、環回等增強的OAM功能,方便操作者發現和定位故障。

相比數據網路,PTN同步特性可以提供高精度的頻率和時間輸出,滿足無線網路嚴格的時鍾要求,對VoIP、實時視頻等業務有優異的性能保證。PTN強調手工指配,不依賴於路由、信令等靈活同時也難以排錯的動態網路協議,在全網范圍內可以很方便地開通端到端不同業務類型的點對點、點對多點和多點對多點連接,可以通過輕點滑鼠查找業務路徑、帶寬、保護、告警、性能和該業務相關的上下層信息。

PTN的主要應用場景

PTN設備在未來的網路應用中主要是在城域網中,主要是移動回傳、優質客戶接入與大客戶虛擬網。

移動網路也在經歷從窄帶向寬頻,從電路向分組化演進的過程中,繼續維護2G,重點發展3G網路在世界上已經是普遍的趨勢。PTN支持2G的BTS到BSC的ATM介面、TDM介面、以太介面,也支持3G的NodeB到RNC的以太介面、傳統TDM介面、ATM介面,對未來向LTE的演進,考慮了合適的容量、物理介面速率、時延丟包性能和S1/X2邏輯介面的支持方案,可以做到同一種設備對不同代的移動網路的同時支持。移動網路本身對高精度時鍾的要求,要求頻率同步做到低於50PPB,時間同步絕對值小於1us,甚至500ns,PTN設備已經普遍支持1588v2和同步以太,對同步的支持是規范和跨廠家的。PTN設備的容量高於MSTP同檔次產品,滿足無線寬頻發展的要求。

對PTN設備組建的精品網路,移動回傳在一定時期內也只會消耗約數百兆容量,大量的帶寬還可以為對網路QoS要求比較高、可靠性高的優質的行業客戶提供接入和組建虛擬網。由於行業客戶的專有網路也在向IP化轉型,引入PTN組建虛擬網,可以高效承載,而且,帶寬配置可以很靈活,安全性和TDM組網一樣高,管理便捷,維護手段更豐富。

PTN的應用場景包括對已有網路和設備的利用。PTN對傳統介面的支持可以保持對原有業務提供不間斷的服務,利用舊網路擴大新網路的覆蓋區域,舊網路也可以利用PTN的特性進一步提高網路性能和成本收益。以2M業務為例,PTN的2M依然可以提供可靠的帶寬保證,但是不用時則可以讓給其他業務共享,因此實際的每Mbps的帶寬成本可以降低很多。

PTN應用場景可以逐步擴大到普遍服務。對小企業來講,以合適的價格享受專線/專網服務,享受高帶寬和高可靠性,不一定只用撥號服務。對一般個人用戶,除非大容量的要求,運營商一般不會直接提供PTN服務,更多的可能是PTN和接入技術的結合,由PON、xDSL等提供家庭多業務接入,然後傳到PTN。

PTN的發展趨勢

PTN技術無疑是目前傳送技術發展的一個高峰,它是繼ATM試圖一統網路世界失敗後,目前看來最有可能實現網路統一的技術。網路統一,近期的應用目標是三網融合,從技術深處來看,是通過網路自身的技術進化,使得業務傳送本身作為一種服務,更便於人與人、人與機器、機器與機器通信的使用,而不是不得不把重心放在傳送本身上,在未來則要實現網路的自組織、自管理。

PTN技術在5年內必將會大規模部署,成為傳送網的主流設備,PTN的設備形態也許會更加多樣化。比如與接入技術的融合,與OTN、ROADM技術的融合。但是PTN提供的傳送作為通信網路的基礎業務之一,如何應用方便、高效、安全可靠,仍然是可以不斷追求的目標。

當前PTN提供的多業務服務主要是同質類型網路的傳送和互聯,從原理上講,可以實現異質網路的互通。目前PTN網路主要考慮的還是大規模部署的可能性和可靠性。業務數據層面的互通性已經有充分的證明,對控制層面的UNI、ENNI介面的互通還需要進一步研究。

傳送網從上世紀80年代SDH產生以來,其核心技術從沒有像今天這樣,發生如此大的改變。PTN技術如此令人驚訝,它的出現徹底改變了TDM作為核心的位置,代之以分組交換和QoS支持。它可以完全接納所有曾經出現的重要的網路,它完整地保持了傳送網技術的核心精神,毫無疑問,PTN作為SDH傳送網的繼承者,在網路基礎服務中將發揮基石作用。

⑻ 網路優化工程師需要學習什麼專業

網路優化工程師需要通信類專業本科學歷,MCSE(微軟認證網路工內程師)和CCNA對成為網路優化工程師容很有幫助。目前,3G網路的建設和發展勢在必行,因此,網路優化人員應提前學習3G知識,了解下一代網路的特點,積累國外運營商的3G網路經驗,做好發展和優化3G網路的知識和技術儲備。在現網優化的工作中,應提前收集現網的基礎資料,合理預測下一代網路的結構,根據下一代網路的特點,對3G網路進行合理的一次性規劃,將網路優化工作融合到3G網路的規劃和工程建設中,盡量減少網路演進對網路服務質量的影響。