python簡單的爬蟲
A. python 最簡單爬蟲爬取數據(一):如何請求
import requests
url=『http://www..com』
r = requests.get(url,timeout=10)
r.raise_for_status()
r.encoding = r.apparent_encoding
print( r.text)
B. 如何用Python編寫一個簡單的爬蟲
所說所有的變數都是對象。 對象在python里,其實是一個指針,指向一個數據結構,數據結構里有屬性,有方法。對象通常就是指變數。從面向對象OO的概念來講,對象是類的一個實例。在python里很簡單,對象就是變數。class A:myname="class a"上面就是一個類。不是對象a=A()這里變數a就是一個對象。它有一個屬性(類屬性),myname,你可以顯示出來print a.myname所以,你看到一個變數後面跟點一個小數點。那麼小數點後面
C. 如何用最簡單的Python爬蟲採集整個網站
在之前的文章中Python實現「維基網路六度分隔理論「之基礎爬蟲,我們實現了在一個網站上隨機地從一個鏈接到另一個鏈接,但是,如果我們需要系統地把整個網站按目錄分類,或者要搜索網站上的每一個頁面,我們該怎麼辦?我們需要採集整個網站,但是那是一種非常耗費內存資源的過程,尤其是處理大型網站時,比較合適的工具就是用一個資料庫來存儲採集的資源,之前也說過。下面來說一下怎麼做。
網站地圖sitemap
網站地圖,又稱站點地圖,它就是一個頁面,上面放置了網站上需要搜索引擎抓取的所有頁面的鏈接(註:不是所有頁面,一般來說是所有文章鏈接。大多數人在網站上找不到自己所需要的信息時,可能會將網站地圖作為一種補救措施。搜索引擎蜘蛛非常喜歡網站地圖。
對於SEO,網站地圖的好處:
1.為搜索引擎蜘蛛提供可以瀏覽整個網站的鏈接簡單的體現出網站的整體框架出來給搜索引擎看;
2.為搜索引擎蜘蛛提供一些鏈接,指向動態頁面或者採用其他方法比較難以到達的頁面;
3.作為一種潛在的著陸頁面,可以為搜索流量進行優化;
4.如果訪問者試圖訪問網站所在域內並不存在的URL,那麼這個訪問者就會被轉到「無法找到文件」的錯誤頁面,而網站地圖可以作為該頁面的「准」內容。
數據採集
採集網站數據並不難,但是需要爬蟲有足夠的深度。我們創建一個爬蟲,遞歸地遍歷每個網站,只收集那些網站頁面上的數據。一般的比較費時間的網站採集方法從頂級頁面開始(一般是網站主頁),然後搜索頁面上的所有鏈接,形成列表,再去採集到的這些鏈接頁面,繼續採集每個頁面的鏈接形成新的列表,重復執行。
很明顯,這是一個復雜度增長很快的過程。加入每個頁面有10個鏈接,網站上有5個頁面深度,如果採集整個網站,一共得採集的網頁數量是105,即100000個頁面。
因為網站的內鏈有很多都是重復的,所以為了避免重復採集,必須鏈接去重,在Python中,去重最常用的方法就是使用自帶的set集合方法。只有「新」鏈接才會被採集。看一下代碼實例:
from urllib.request import urlopenfrom bs4 import BeautifulSoupimport repages = set()def getLinks(pageurl):globalpageshtml= urlopen("" + pageurl)soup= BeautifulSoup(html)forlink in soup.findAll("a", href=re.compile("^(/wiki/)")):if'href' in link.attrs:iflink.attrs['href'] not in pages:#這是新頁面newPage= link.attrs['href']print(newPage)pages.add(newPage)getLinks(newPage)getLinks("")
原理說明:程序執行時,用函數處理一個空URL,其實就是維基網路的主頁,然後遍歷首頁上每個鏈接,並檢查是否已經在全局變數集合pages裡面,如果不在,就列印並添加到pages集合,然後遞歸處理這個鏈接。
遞歸警告:Python默認的遞歸限制是1000次,因為維基網路的鏈接浩如煙海,所以這個程序達到遞歸限制後就會停止。如果你不想讓它停止,你可以設置一個遞歸計數器或者其他方法。
採集整個網站數據
為了有效使用爬蟲,在用爬蟲的時候我們需要在頁面上做一些事情。我們來創建一個爬蟲來收集頁面標題、正文的第一個段落,以及編輯頁面的鏈接(如果有的話)這些信息。
第一步,我們需要先觀察網站上的頁面,然後制定採集模式,通過F12(一般情況下)審查元素,即可看到頁面組成。
觀察維基網路頁面,包括詞條和非詞條頁面,比如隱私策略之類的頁面,可以得出下面的規則:
所有的標題都是在h1→span標簽里,而且頁面上只有一個h1標簽。
所有的正文文字都在div#bodyContent標簽里,如果我們想獲取第一段文字,可以用div#mw-content-text→p,除了文件頁面,這個規則對所有頁面都適用。
編輯鏈接只出現在詞條頁面上,如果有編輯鏈接,都位於li#ca-edit標簽的li#ca-edit→span→a裡面。
調整一下之前的代碼,我們可以建立一個爬蟲和數據採集的組合程序,代碼如下:
import redef getLinks(pageUrl):global pageshtml = urlopen("" + pageUrl)soup = BeautifulSoup(html)try:print(soup.h1.get_text())print(soup.find(id="mw-content-text").findAll("p")[0])print(soup.find(id="ca-edit").find("span").find("a").attrs['href'])except AttributeError:print("頁面缺少屬性")for link in soup.findAll("a", href =re.compile("^(/wiki/)")):if 'href' in link.attrs:#這是新頁面newPage = link.attrs['href']print("------------------\n"+newPage)
這個for循環和原來的採集程序基本上是一樣的,因為不能確定每一頁上都有所有類型的數據,所以每個列印語句都是按照數據在頁面上出現的可能性從高到低排列的。
數據存儲到MySQL
前面已經獲取了數據,直接列印出來,查看比較麻煩,所以我們就直接存到MySQL裡面吧,這里只存鏈接沒有意義,所以我們就存儲頁面的標題和內容。前面我有兩篇文章已經介紹過如何存儲數據到MySQL,數據表是pages,這里直接給出代碼:
import reimport datetimeimport randomimport pymysqlconn = pymysql.connect(host = '127.0.0.1',port = 3306, user = 'root', passwd = '19930319', db = 'wiki', charset ='utf8mb4')cur = conn.cursor()cur.execute("USE wiki")#隨機數種子random.seed(datetime.datetime.now())#數據存儲def store(title, content):cur.execute("INSERT INTO pages(title, content)VALUES(\"%s\", \"%s\")", (title, content))cur.connection.commit()def getLinks(articleUrl):html = urlopen("" + articleUrl)title = soup.find("h1").get_text()content =soup.find("div",{"id":"mw-content-text"}).find("p").get_text()store(title, content)returnsoup.find("div",{"id":"bodyContent"}).findAll("a",href=re.compile("^(/wiki/)((?!:).)*$"))#設置第一頁links =getLinks("/wiki/Kevin_Bacon")try:while len(links)>0:newArticle = links[random.randint(0, len(links)-1)].attrs['href']print (newArticle)links = getLinks(newArticle)finally:cur.close()conn.close()
小結
今天主要講一下Python中遍歷採集一個網站的鏈接,方便下面的學習。
希望通過上面的操作能幫助大家。如果你有什麼好的意見,建議,或者有不同的看法,我都希望你留言和我們進行交流、討論。
D. 如何用Python做爬蟲
在我們日常上網瀏覽網頁的時候,經常會看到一些好看的圖片,我們就希望把這些圖片保存下載,或者用戶用來做桌面壁紙,或者用來做設計的素材。
我們最常規的做法就是通過滑鼠右鍵,選擇另存為。但有些圖片滑鼠右鍵的時候並沒有另存為選項,還有辦法就通過就是通過截圖工具截取下來,但這樣就降低圖片的清晰度。好吧其實你很厲害的,右鍵查看頁面源代碼。
我們可以通過python來實現這樣一個簡單的爬蟲功能,把我們想要的代碼爬取到本地。下面就看看如何使用python來實現這樣一個功能。
E. Python爬蟲好學嗎
首先如果有編程基礎的話,python比較好學,而後python有基礎的話,爬蟲還是很好學的。但是要多看多練,多去論壇逛,有自己的想法。
F. python 簡單爬蟲問題
可能是你請求數據錯誤
現在的數據不是這樣么
您需要向該地址網頁鏈接
通過POST或GET方法發送下列欄位來訪問服務
欄位名 類型 必填參數 描述 備注
q TEXT Y 請求翻譯query UTF-8編碼
from TEXT Y 翻譯源語言 語言列表(可設置為auto)
to TEXT Y 譯文語言 語言列表(不可設置為auto)
appid INT Y APP ID 可在管理控制台查看
salt INT Y 隨機數
sign TEXT Y 簽名 appid+q+salt+密鑰 的MD5值
G. python新手求助 關於爬蟲的簡單例子
#coding=utf-8
from bs4 import BeautifulSoup
with open('index.html', 'r') as file:
fcontent = file.read()
sp = BeautifulSoup(fcontent, 'html.parser')
t = 'new_text_for_replacement'
# replace the paragraph using `replace_with` method
sp.find(itemprop='someprop').replace_with(t)
# open another file for writing
with open('output.html', 'w') as fp:
# write the current soup content
fp.write(sp.prettify())
如果要替換段落的內容而不是段落元素本身,可以設置.string屬性。
sp.find(itemprop='someprop').string = t
贊0收藏0評論0分享
用戶回答回答於 2018-07-26
問題取決於你搜索標準的方式,嘗試更改以下代碼:
print(sp.replace(sp.find(itemprop="someprop").text,t))
對此:
print(sp.replace(sp.find({"itemprop":"someprop"}).text,t))
# coding:utf-8
from bs4 import BeautifulSoup
import requests
import os
url = 'https://'
r = requests.get(url)
demo = r.text # 伺服器返回響應
soup = BeautifulSoup(demo, "html.parser")
"""
demo 表示被解析的html格式的內容
html.parser表示解析用的解析器
"""
# 輸出響應的html對象
ab = list()
with open("D:\\temp\\mii.txt","w+",encoding="utf-8") as xxx:
for mi in soup.find_all('a'):
ab.append(mi.prettify()) # 使用prettify()格式化顯示輸出
# xxx.writelines(str(mi))
xxx.writelines(ab)
xxx.close()
H. 求用Python編寫的一個簡單的網路爬蟲,跪求!!!!
#爬蟲的需求:爬取github上有關python的優質項目
#coding=utf-8
importrequests
frombs4importBeautifulSoup
defget_effect_data(data):
results=list()
soup=BeautifulSoup(data,'html.parser')
#printsoup
projects=soup.find_all('div',class_='repo-list-itemd-flexflex-justify-startpy-4publicsource')
forprojectinprojects:
#printproject,'----'
try:
writer_project=project.find('a',attrs={'class':'v-align-middle'})['href'].strip()
project_language=project.find('div',attrs={'class':'d-table-cellcol-2text-graypt-2'}).get_text().strip()
project_starts=project.find('a',attrs={'class':'muted-link'}).get_text().strip()
update_desc=project.find('p',attrs={'class':'f6text-graymr-3mb-0mt-2'}).get_text().strip()
#update_desc=None
result=(writer_project.split('/')[1],writer_project.split('/')[2],project_language,project_starts,update_desc)
results.append(result)
exceptException,e:
pass
#printresults
returnresults
defget_response_data(page):
request_url='https://github.com/search'
params={'o':'desc','q':'python','s':'stars','type':'Repositories','p':page}
resp=requests.get(request_url,params)
returnresp.text
if__name__=='__main__':
total_page=1#爬蟲數據的總頁數
datas=list()
forpageinrange(total_page):
res_data=get_response_data(page+1)
data=get_effect_data(res_data)
datas+=data
foriindatas:
printi
I. python新手關於爬蟲的簡單例子
# coding:utf-8
from bs4 import BeautifulSoup
import requests
import os
url = 'http://www..com'
r = requests.get(url)
demo = r.text # 伺服器返回響應
soup = BeautifulSoup(demo, "html.parser")
"""
demo 表示被解析的html格式的內容
html.parser表示解析用的解析器
"""
# 輸出響應的html對象
ab = list()
with open("D:\\temp\\mii.txt","w+",encoding="utf-8") as xxx:
for mi in soup.find_all('a'):
# ab.append(mi.prettify()) # 使用prettify()格式化顯示輸出
xxx.writelines(str(mi))
xxx.write("\n")
xxx.close()
執行完畢 D盤下 temp 目錄的 mii.txt文件會得到爬取到的所有鏈接。
J. 如何入門 Python 爬蟲
「入門」是良好的動機,但是可能作用緩慢。如果你手裡或者腦子里有一個項目,那麼實踐起來你會被目標驅動,而不會像學習模塊一樣慢慢學習。
另外如果說知識體系裡的每一個知識點是圖里的點,依賴關系是邊的話,那麼這個圖一定不是一個有向無環圖。因為學習A的經驗可以幫助你學習B。因此,你不需要學習怎麼樣「入門」,因為這樣的「入門」點根本不存在!你需要學習的是怎麼樣做一個比較大的東西,在這個過程中,你會很快地學會需要學會的東西的。當然,你可以爭論說需要先懂python,不然怎麼學會python做爬蟲呢?但是事實上,你完全可以在做這個爬蟲的過程中學習python :D看到前面很多答案都講的「術」——用什麼軟體怎麼爬,那我就講講「道」和「術」吧——爬蟲怎麼工作以及怎麼在python實現。
先長話短說總結一下。你需要學習:
基本的爬蟲工作原理
基本的http抓取工具,scrapy
Bloom Filter: Bloom
如果需要大規模網頁抓取,你需要學習分布式爬蟲的概念。其實沒那麼玄乎,你只要學會怎樣維護一個所有集群機器能夠有效分享的分布式隊列就好。最簡單的實現是python-rq: https: //github.com /nvie/rqrq和Scrapy的結合:darkrho/scrapy-redis · GitHub後續處理,網頁析取(grangier/python-goose · GitHub),存儲(Mongodb)以下是短話長說。說說當初寫的一個集群爬下整個豆瓣的經驗吧。
1)首先你要明白爬蟲怎樣工作
想像你是一隻蜘蛛,現在你被放到了互聯「網」上。那麼,你需要把所有的網頁都看一遍。怎麼辦呢?沒問題呀,你就隨便從某個地方開始,比如說人民日報的首頁,這個叫initial pages,用$表示吧。
在人民日報的首頁,你看到那個頁面引向的各種鏈接。於是你很開心地從爬到了「國內新聞」那個頁面。太好了,這樣你就已經爬完了倆頁面(首頁和國內新聞)!暫且不用管爬下來的頁面怎麼處理的,你就想像你把這個頁面完完整整抄成了個html放到了你身上。
突然你發現, 在國內新聞這個頁面上,有一個鏈接鏈回「首頁」。作為一隻聰明的蜘蛛,你肯定知道你不用爬回去的吧,因為你已經看過了啊。所以,你需要用你的腦子,存下你已經看過的頁面地址。這樣,每次看到一個可能需要爬的新鏈接,你就先查查你腦子里是不是已經去過這個頁面地址。如果去過,那就別去了。
好的,理論上如果所有的頁面可以從initial page達到的話,那麼可以證明你一定可以爬完所有的網頁。
那麼在python里怎麼實現呢?很簡單:
Python
import Queue
initial_page = "http:/ /www. renminribao. com"url_queue = Queue.Queue()seen = set()
seen.insert(initial_page)
url_queue.put(initial_page)
while(True): #一直進行直到海枯石爛
if url_queue.size()>0:
current_url = url_queue.get() #拿出隊例中第一個的urlstore(current_url) #把這個url代表的網頁存儲好for next_url in extract_urls(current_url): #提取把這個url里鏈向的urlif next_url not in seen:
seen.put(next_url)
url_queue.put(next_url)
else:
break
import Queue
initial_page = "http:/ / www.renminribao .com"url_queue = Queue.Queue()seen = set()
seen.insert(initial_page)
url_queue.put(initial_page)
while(True): #一直進行直到海枯石爛
if url_queue.size()>0:
current_url = url_queue.get() #拿出隊例中第一個的urlstore(current_url) #把這個url代表的網頁存儲好for next_url in extract_urls(current_url): #提取把這個url里鏈向的urlif next_url not in seen:
seen.put(next_url)
url_queue.put(next_url)
else:
break
寫得已經很偽代碼了。
所有的爬蟲的backbone都在這里,下面分析一下為什麼爬蟲事實上是個非常復雜的東西——搜索引擎公司通常有一整個團隊來維護和開發。
2)效率
如果你直接加工一下上面的代碼直接運行的話,你需要一整年才能爬下整個豆瓣的內容。更別說Google這樣的搜索引擎需要爬下全網的內容了。
問題出在哪呢?需要爬的網頁實在太多太多了,而上面的代碼太慢太慢了。設想全網有N個網站,那麼分析一下判重的復雜度就是N*log(N),因為所有網頁要遍歷一次,而每次判重用set的話需要log(N)的復雜度。OK,OK,我知道python的set實現是hash——不過這樣還是太慢了,至少內存使用效率不高。
通常的判重做法是怎樣呢?Bloom Filter。簡單講它仍然是一種hash的方法,但是它的特點是,它可以使用固定的內存(不隨url的數量而增長)以O(1)的效率判定url是否已經在set中。可惜天下沒有白吃的午餐,它的唯一問題在於,如果這個url不在set中,BF可以100%確定這個url沒有看過。但是如果這個url在set中,它會告訴你:這個url應該已經出現過,不過我有2%的不確定性。注意這里的不確定性在你分配的內存足夠大的時候,可以變得很小很少。一個簡單的教程:Bloom Filters by Example注意到這個特點,url如果被看過,那麼可能以小概率重復看一看(沒關系,多看看不會累死)。但是如果沒被看過,一定會被看一下(這個很重要,不然我們就要漏掉一些網頁了!)。 [IMPORTANT: 此段有問題,請暫時略過]
好,現在已經接近處理判重最快的方法了。另外一個瓶頸——你只有一台機器。不管你的帶寬有多大,只要你的機器下載網頁的速度是瓶頸的話,那麼你只有加快這個速度。用一台機子不夠的話——用很多台吧!當然,我們假設每台機子都已經進了最大的效率——使用多線程(python的話,多進程吧)。
3)集群化抓取
爬取豆瓣的時候,我總共用了100多台機器晝夜不停地運行了一個月。想像如果只用一台機子你就得運行100個月了…那麼,假設你現在有100台機器可以用,怎麼用python實現一個分布式的爬取演算法呢?
我們把這100台中的99台運算能力較小的機器叫作slave,另外一台較大的機器叫作master,那麼回顧上面代碼中的url_queue,如果我們能把這個queue放到這台master機器上,所有的slave都可以通過網路跟master聯通,每當一個slave完成下載一個網頁,就向master請求一個新的網頁來抓取。而每次slave新抓到一個網頁,就把這個網頁上所有的鏈接送到master的queue里去。同樣,bloom filter也放到master上,但是現在master只發送確定沒有被訪問過的url給slave。Bloom Filter放到master的內存里,而被訪問過的url放到運行在master上的Redis里,這樣保證所有操作都是O(1)。(至少平攤是O(1),Redis的訪問效率見:LINSERT – Redis)考慮如何用python實現:
在各台slave上裝好scrapy,那麼各台機子就變成了一台有抓取能力的slave,在master上裝好Redis和rq用作分布式隊列。
代碼於是寫成:
Python
#slave.py
current_url = request_from_master()
to_send = []
for next_url in extract_urls(current_url):
to_send.append(next_url)
store(current_url);
send_to_master(to_send)
#master.py
distributed_queue = DistributedQueue()
bf = BloomFilter()
initial_pages = "www. renmingribao .com"
while(True):
if request == 'GET':
if distributed_queue.size()>0:
send(distributed_queue.get())
else:
break
elif request == 'POST':
bf.put(request.url)
#slave.py
current_url = request_from_master()
to_send = []
for next_url in extract_urls(current_url):
to_send.append(next_url)
store(current_url);
send_to_master(to_send)
#master.py
distributed_queue = DistributedQueue()
bf = BloomFilter()
initial_pages = "www. renmingribao .com"
while(True):
if request == 'GET':
if distributed_queue.size()>0:
send(distributed_queue.get())
else:
break
elif request == 'POST':
bf.put(request.url)
好的,其實你能想到,有人已經給你寫好了你需要的:darkrho/scrapy-redis · GitHub4)展望及後處理雖然上面用很多「簡單」,但是真正要實現一個商業規模可用的爬蟲並不是一件容易的事。上面的代碼用來爬一個整體的網站幾乎沒有太大的問題。
但是如果附加上你需要這些後續處理,比如
有效地存儲(資料庫應該怎樣安排)
有效地判重(這里指網頁判重,咱可不想把人民日報和抄襲它的大民日報都爬一遍)有效地信息抽取(比如怎麼樣抽取出網頁上所有的地址抽取出來,「朝陽區奮進路中華道」),搜索引擎通常不需要存儲所有的信息,比如圖片我存來幹嘛…及時更新(預測這個網頁多久會更新一次)如你所想,這里每一個點都可以供很多研究者十數年的研究。雖然如此,「路漫漫其修遠兮,吾將上下而求索」。