python 多線程 怎麼改成非同步

python使用multiprocessing模塊實現帶回調函數的非同步調用方法。分享給大家供大家參考。具體分析如下:
multipressing模塊是python 2.6版本加入的,通過這個模塊可以輕松實現非同步調用
from multiprocessing import Pool
def f(x):
return x*x
if __name__ == '__main__':
pool = Pool(processes=1)
# Start a worker processes.
result = pool.apply_async(f, [10], callback)
# Evaluate "f(10)" asynchronously calling callback when finished.
希望本文所述對大家的Python程序設計有所幫助。

❷ python 什麼是http非同步請求

http請求為耗時IO操作,如果同步阻塞的話,進程會等待請求完成。
非同步的話,進程會發出http請求(請求以後不需要cpu),然後跳轉到別的任務,直到http請求完成,再調回來繼續處理得到的http回應。
最經典的例子就是燒水,同步阻塞就是你一直蹲在爐子旁邊等待水燒開,而非同步是把水壺放在爐子上,等水開了以後茶壺會叫,這時候你聽到聲音就會回來處理開水~

❸ python 非同步是什麼意思

非同步是計算機多線程的非同步處理。與同步處理相對,非同步處理不用阻塞當前線程來等待處理完成,而是允許後續操作,直至其它線程將處理完成,並回調通知此線程。

❹ python非同步有哪些方式

yield相當於return,他將相應的值返回給調用next()或者send()的調用者,從而交出了CPU使用權,而當調用者再次調用next()或者send()的時候,又會返回到yield中斷的地方,如果send有參數,還會將參數返回給yield賦值的變數,如果沒有就和next()一樣賦值為None。但是這里會遇到一個問題,就是嵌套使用generator時外層的generator需要寫大量代碼,看如下示例:
注意以下代碼均在Python3.6上運行調試

#!/usr/bin/env python# encoding:utf-8def inner_generator():
i = 0
while True:
i = yield i if i > 10: raise StopIterationdef outer_generator():
print("do something before yield")
from_inner = 0
from_outer = 1
g = inner_generator()
g.send(None) while 1: try:
from_inner = g.send(from_outer)
from_outer = yield from_inner except StopIteration: breakdef main():
g = outer_generator()
g.send(None)
i = 0
while 1: try:
i = g.send(i + 1)
print(i) except StopIteration: breakif __name__ == '__main__':
main()041

為了簡化,在Python3.3中引入了yield from

yield from

使用yield from有兩個好處,

1、可以將main中send的參數一直返回給最里層的generator,
2、同時我們也不需要再使用while循環和send (), next()來進行迭代。

我們可以將上邊的代碼修改如下:

def inner_generator():
i = 0
while True:
i = yield i if i > 10: raise StopIterationdef outer_generator():
print("do something before coroutine start") yield from inner_generator()def main():
g = outer_generator()
g.send(None)
i = 0
while 1: try:
i = g.send(i + 1)
print(i) except StopIteration: breakif __name__ == '__main__':
main()

執行結果如下:

do something before coroutine start123456789101234567891011

這里inner_generator()中執行的代碼片段我們實際就可以認為是協程,所以總的來說邏輯圖如下:

我們都知道Python由於GIL(Global Interpreter Lock)原因,其線程效率並不高,並且在*nix系統中,創建線程的開銷並不比進程小,因此在並發操作時,多線程的效率還是受到了很大制約的。所以後來人們發現通過yield來中斷代碼片段的執行,同時交出了cpu的使用權,於是協程的概念產生了。在Python3.4正式引入了協程的概念,代碼示例如下:

import asyncio# Borrowed from http://curio.readthedocs.org/en/latest/tutorial.html[email protected] countdown(number, n):
while n > 0:
print('T-minus', n, '({})'.format(number)) yield from asyncio.sleep(1)
n -= 1loop = asyncio.get_event_loop()
tasks = [
asyncio.ensure_future(countdown("A", 2)),
asyncio.ensure_future(countdown("B", 3))]
loop.run_until_complete(asyncio.wait(tasks))
loop.close()12345678910111213141516

示例顯示了在Python3.4引入兩個重要概念協程和事件循環,
通過修飾符@asyncio.coroutine定義了一個協程,而通過event loop來執行tasks中所有的協程任務。之後在Python3.5引入了新的async & await語法,從而有了原生協程的概念。

async & await

在Python3.5中,引入了aync&await 語法結構,通過」aync def」可以定義一個協程代碼片段,作用類似於Python3.4中的@asyncio.coroutine修飾符,而await則相當於」yield from」。

先來看一段代碼,這個是我剛開始使用async&await語法時,寫的一段小程序

#!/usr/bin/env python# encoding:utf-8import asyncioimport requestsimport time


async def wait_download(url):
response = await requets.get(url)
print("get {} response complete.".format(url))


async def main():
start = time.time()
await asyncio.wait([
wait_download("http://www.163.com"),
wait_download("http://www.mi.com"),
wait_download("http://www.google.com")])
end = time.time()
print("Complete in {} seconds".format(end - start))


loop = asyncio.get_event_loop()
loop.run_until_complete(main())

這里會收到這樣的報錯:

Task exception was never retrieved
future: <Task finished coro=<wait_download() done, defined at asynctest.py:9> exception=TypeError("object Response can't be used in 'await' expression",)>
Traceback (most recent call last):
File "asynctest.py", line 10, in wait_download
data = await requests.get(url)
TypeError: object Response can't be used in 'await' expression123456

這是由於requests.get()函數返回的Response對象不能用於await表達式,可是如果不能用於await,還怎麼樣來實現非同步呢?
原來Python的await表達式是類似於」yield from」的東西,但是await會去做參數檢查,它要求await表達式中的對象必須是awaitable的,那啥是awaitable呢? awaitable對象必須滿足如下條件中其中之一:

1、A native coroutine object returned from a native coroutine function .

原生協程對象

2、A generator-based coroutine object returned from a function decorated with types.coroutine() .

types.coroutine()修飾的基於生成器的協程對象,注意不是Python3.4中asyncio.coroutine

3、An object with an await method returning an iterator.

實現了await method,並在其中返回了iterator的對象

根據這些條件定義,我們可以修改代碼如下:

#!/usr/bin/env python# encoding:utf-8import asyncioimport requestsimport time


async def download(url): # 通過async def定義的函數是原生的協程對象
response = requests.get(url)
print(response.text)


async def wait_download(url):
await download(url) # 這里download(url)就是一個原生的協程對象
print("get {} data complete.".format(url))


async def main():
start = time.time()
await asyncio.wait([
wait_download("http://www.163.com"),
wait_download("http://www.mi.com"),
wait_download("http://www.google.com")])
end = time.time()
print("Complete in {} seconds".format(end - start))


loop = asyncio.get_event_loop()
loop.run_until_complete(main())27282930

好了現在一個真正的實現了非同步編程的小程序終於誕生了。
而目前更牛逼的非同步是使用uvloop或者pyuv,這兩個最新的Python庫都是libuv實現的,可以提供更加高效的event loop。

uvloop和pyuv

pyuv實現了Python2.x和3.x,但是該項目在github上已經許久沒有更新了,不知道是否還有人在維護。
uvloop只實現了3.x, 但是該項目在github上始終活躍。

它們的使用也非常簡單,以uvloop為例,只需要添加以下代碼就可以了

import asyncioimport uvloop
asyncio.set_event_loop_policy(uvloop.EventLoopPolicy())123

❺ python 調用shell命令是非同步的么

抄代碼如下:
output = os.popen('cat /proc/cpuinfo')
print output.read()
通過 os.popen() 返回的是 file read 的對象,對其進行讀取 read() 的操作可以看到執行的輸出。但是無法讀取程序執行的返回值)
嘗試第三種方案 commands.getstatusoutput() 一個方法就可以獲得到返回值和輸出,非常好用。

❻ python里怎麼實現非同步調用

本文實例講述了python使用multiprocessing模塊實現帶回調函數的非同步調用方法。分享給大家供大家參考。具體分析如下:
multipressing模塊是python 2.6版本加入的,通過這個模塊可以輕松實現非同步調用
from multiprocessing import Pool
def f(x):
return x*x
if __name__ == '__main__':
pool = Pool(processes=1)
# Start a worker processes.
result = pool.apply_async(f, [10], callback)
# Evaluate "f(10)" asynchronously calling callback when finished.
希望本文所述對大家的Python程序設計有所幫助。

❼ python有非同步介面么

def eager_range(up_to): """Create a list of integers, from 0 to up_to, exclusive."""
sequence = []
index = 0 while index < up_to:
sequence.append(index)
index += 1 return sequence

❽ python非同步和多進程有什麼區別

  1. 非同步本質還是由多線程來實現,但是是者運行環境/sdk/語言層面幫你隱藏了細節

  2. 非同步一般和多線程比較,至於和多進程比的一般也是多線程

  3. 多進程那就是內存等資源完全隔離開的,開銷比較大

❾ python 非同步阻塞怎麼實現

參考io多路復用

❿ python 同步和非同步的區別

可以使用切片獲取部分數據;
元組的值一旦設置:
{}表示字典,[]是數組,()是元組;
數組的值可以改變區別如下,不可更改,不可使用切片