1. 數據分析師和數據產品經理有什麼區別

CDA——數據分析師主要是在企業中扮演戰略參謀的角色,對企業各類運營、銷售、管理、戰略等數據進行分析,可以有效的規避運營風險和提升成本利用率。
數據產品經理從事數據產品(企業數據平台、數據分析軟體等)的設計

2. 數據運營主要是做什麼的呢

負責運營數據分析,報表製作,根據業務需求提出解決方案
對用戶數據進版行分析和挖掘,抽象用戶標權簽,搭建用戶畫像系統和用戶標簽體系

構建全面,准確,符合業務特徵的數據指標體系,及時定位和發現業務問題
完成業務開展,風險策略,風控決策方面的數據支持需求,產出日常報表
日常數據提取和分析,滿足其他業務方數據分析需求

3. 什麼叫數據運營

么是數據運營?我們可以從廣義和俠義兩個角度來理解:

①狹義:指「數據運營」這一工作崗位。它跟內容運營、產品運營、活動運營、用戶運營一樣,屬於運營的一個分支,從事數據採集、清理、分析、策略等工作,支撐整個運營體系朝精細化方向發展;

②廣義:數據是反映產品和用戶狀態真實的一種方式,通過數據指導運營決策、驅動業務增長。與數據分析師的崗位不同,數據運營更加側重支持一線業務決策。

二、數據運營的主要工作是什麼

1、數據運營是做什麼的:數據規劃

數據規劃是整個數據運營體系的基礎,它的目的是搞清楚「要什麼」。只有先搞清楚自己的目的是什麼、需要什麼樣的數據,接下來的數據採集和數據分析才更加有針對性。

數據規劃有兩個重要概念:指標和維度。

1)什麼是指標?

指標用來衡量具體的運營效果,比如 UV、DAU、銷售金額、轉化率等等。指標的選擇來源於具體的業務需求,從需求中歸納事件,從事件對應指標。

2)什麼是維度?

維度是用來對指標進行細分的屬性,比如廣告來源、瀏覽器類型、訪問地區等等。大體上,維度可以分為人口屬性、設備屬性、流量屬性、行為屬性4個方面:

①人口屬性:包括性別、年齡、學歷等人口統計學數據;

②設備屬性:包括設備類型、型號等等;

③流量屬性:訪問來源,廣告來源、廣告內容、關鍵詞等等;

④行為屬性:活躍度、新老用戶等等。

2、數據運營是做什麼的:數據採集

數據採集是數據分析的基礎,傳統的數據採集需要花費人力成本和時間成本。數據採集目前有三種常見的數據採集方案,分別是埋點、可視化埋點和無埋點。

①埋點:通過在產品(網頁、APP等)中手動添加統計代碼收集需要的數據。

②可視化埋點:可視化埋點是埋點的延伸,通過可視化交互的方式來代替手動埋點。這種方式降低了用戶使用的門檻,提升了效率。

③無埋點:無埋點顛覆了傳統的「先定義再採集」的流程,只需要載入一個SDK就可以採集全量的用戶行為數據,然後可以靈活自定義分析所有行為數據。相比於埋點方案,無埋點成本低、速度快,不會發生錯錯埋、漏埋情況。

4. 數據運營是做什麼的

1.數據規劃


數據規劃是指收集整理業務部門數據需求,搭建完整的數據指標體系。


這里有兩個重要概念:指標和維度!指標(index),也有稱度量(measure)。指標用來衡量具體的運營效果,比如UV、DAU、銷售金額、轉化率等等。指標的選擇來源於具體的業務需求,從需求中歸納事件,從事件對應指標。維度是用來對指標進行細分的屬性,比如廣告來源、瀏覽器類型、訪問地區等等。選擇維度的原則是:記錄那些對指標可能產生影響的維度。


2.數據採集


數據採集是指採集業務數據,向業務部門提供數據報表或者數據看板。


巧婦難為無米之炊,數據採集的重要性不言而喻。目前有三種常見的數據採集方案,分別是埋點、可視化埋點和無埋點。相比於埋點方案,無埋點成本低、速度快,不會發生錯埋、漏埋情況。無埋點正在成為市場的新寵兒,越來越多的企業採用了GrowingIO的無埋點方案。在無埋點情景下,數據運營可以擺脫埋點需求的桎梏,將更多時間放在業務分析上。


3.數據分析


數據分析是指通過數據挖掘、數據模型等方式,深入分析業務數據;提供數據分析報告,定位問題,並且提出解決方案。


數據分析是數據運營的重點工作,數據規劃和數據採集都是為了數據分析服務的。我們的最終目的是通過數據分析的方法定位問題,提出解決方案,促進業務增長。


關於數據運營是做什麼的,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章能夠對你有所幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。

5. 數據運營和數據分析的區別是什麼

數據分析是項目 和數據運營的區別
①從工作的性質看 日常運營存在大量的常規的重復活動,持續不斷地進行,而項目是獨特性一次性的努力;②從運作的目標來看 日常運營強調效率和有效性,而項目強調項目目標的實現;③從運作的環境來看 日常運營的環境相對封閉和確定,而項目的環境相對開放和不確定;④從組織體系來看 日常運營的組織體系一般是相對不變和相對持久的,基本按部門來劃分,而項目組織體系是相對變化和相對暫時的,按項目團隊來劃分;⑤從管理模式 日常運營一般按照部門的職能性和直線指揮系統進行管理,而項目按照項目的過程和活動進行管理。

6. 數據運營和數據分析是一回事嗎

數據分析是項目和數據運營的區別①從工作的性質看日常運營存在大量的常規的回重復活動,答持續不斷地進行,而項目是獨特性一次性的努力;②從運作的目標來看日常運營強調效率和有效性,而項目強調項目目標的實現;③從運作的環境來看日常運營的環

7. 數據運營經驗:什麼是數據分析,怎麼做數據分

數據分析是基於商業目的,有目的的進行收集、整理、加工和分析數據,提煉有價信息的一個過程。
其過程概括起來主要包括:明確分析目的與框架、數據收集、數據處理、數據分析、數據展現和撰寫報告等6個階段。
1、明確分析目的與框架
一個分析項目,你的數據對象是誰?商業目的是什麼?要解決什麼業務問題?數據分析師對這些都要瞭然於心。
基於商業的理解,整理分析框架和分析思路。例如,減少新客戶的流失、優化活動效果、提高客戶響應率等等。不同的項目對數據的要求,使用的分析手段也是不一樣的。
2、數據收集
數據收集是按照確定的數據分析和框架內容,有目的的收集、整合相關數據的一個過程,它是數據分析的一個基礎。
3、數據處理
數據處理是指對收集到的數據進行加工、整理,以便開展數據分析,它是數據分析前必不可少的階段。這個過程是數據分析整個過程中最占據時間的,也在一定程度上取決於數據倉庫的搭建和數據質量的保證。
數據處理主要包括數據清洗、數據轉化等處理方法。
4、數據分析
數據分析是指通過分析手段、方法和技巧對准備好的數據進行探索、分析,從中發現因果關系、內部聯系和業務規律,為商業目提供決策參考。
到了這個階段,要能駕馭數據、開展數據分析,就要涉及到工具和方法的使用。其一要熟悉常規數據分析方法,最基本的要了解例如方差、回歸、因子、聚類、分類、時間序列等多元和數據分析方法的原理、使用范圍、優缺點和結果的解釋;其二是熟悉1+1種數據分析工具,Excel是最常見,一般的數據分析我們可以通過Excel完成,後而要熟悉一個專業的分析軟體,如數據分析工具SPSS/SAS/R/Matlab等,便於進行一些專業的統計分析、數據建模等。
5、數據展現
一般情況下,數據分析的結果都是通過圖、表的方式來呈現,俗話說:字不如表,表不如圖。。藉助數據展現手段,能更直觀的讓數據分析師表述想要呈現的信息、觀點和建議。。
常用的圖表包括餅圖、折線圖、柱形圖/條形圖、散點圖、雷達圖等、金字塔圖、矩陣圖、漏斗圖、帕雷托圖等。
6、撰寫報告
最後階段,就是撰寫數據分析報告,這是對整個數據分析成果的一個呈現。通過分析報告,把數據分析的目的、過程、結果及方案完整呈現出來,以供商業目的提供參考。
一份好的數據分析報告,首先需要有一個好的分析框架,並且圖文並茂,層次明晰,能夠讓閱讀者一目瞭然。結構清晰、主次分明可以使閱讀者正確理解報告內容; 圖文並茂,可以令數據更加生動活潑,提高視覺沖擊力,有助於閱讀者更形象、直觀地看清楚問題和結論,從而產生思考。
另外,數據分析報告需要有明確的結論、建議和解決方案,不僅僅是找出問題,後者是更重要的,否則稱不上好的分析,同時也失去了報告的意義,數據的初衷就是為解決一個商業目的才進行的分析,不能舍本求末。

8. 數據挖掘與數據分析的區別是什麼

  • 數據分析與數據挖掘的目的不一樣,數據分析是有明確的分析群體,就是對群體進行各個維度的拆、分、組合,來找到問題的所在,而數據發挖掘的目標群體是不確定的,需要我們更多是是從數據的內在聯繫上去分析,從而結合業務、用戶、數據進行更多的洞察解讀。

  • 數據分析與數據挖掘的思考方式不同,一般來講,數據分析是根據客觀的數據進行不斷的驗證和假設,而數據挖掘是沒有假設的,但你也要根據模型的輸出給出你評判的標准。

    我們經常做分析的時候,數據分析需要的思維性更強一些,更多是運用結構化、MECE的思考方式,類似程序中的假設。

    分析框架(假設)+客觀問題(數據分析)=結論(主觀判斷)

    而數據挖掘大多數是大而全,多而精,數據越多模型越可能精確,變數越多,數據之間的關系越明確

  • 數據分析更多依賴於業務知識,數據挖掘更多側重於技術的實現,對於業務的要求稍微有所降低,數據挖掘往往需要更大數據量,而數據量越大,對於技術的要求也就越高需要比較強的編程能力,數學能力和機器學習的能力。如果從結果上來看,數據分析更多側重的是結果的呈現,需要結合業務知識來進行解讀。而數據挖掘的結果是一個模型,通過這個模型來分析整個數據的規律,一次來實現對於未來的預測,比如判斷用戶的特點,用戶適合什麼樣的營銷活動。顯然,數據挖掘比數據分析要更深一個層次。數據分析是將數據轉化為信息的工具,而數據挖掘是將信息轉化為認知的工具。


其實不論數據分析還是數據挖掘,能抓住老鼠的就是好貓,真的沒必要糾結他們之前的區別,難道你給領導匯報時,第一部分是數據分析得出,第二部分是數據挖掘得出?他們只關注你分析的邏輯、呈現的方式。

9. 大數據分析與運營數據分析區別

前者指的是數據量大,後者著重實時性。

10. 數據分析師和項目數據分析師有什麼區別

數據分析師在企業主要做的是全局化是分析,主要針對一個產品或者說是一個行業的進行分析,分析競爭力,分析自己產品然後找出差異性。他也可以在行業中廣泛應用與一個行業調研機構。他們主要是為行業提供數據。例如電商數據研究中心的易觀數據就是這樣的機構。
而項目數據分析師主要是針對性某一個產品或者一個項目針對性分析,需要數據更加精準性,同時也需要調用一些行業的數據分析師分析的數據來使用,做出更加精準的數據。來通過數據做出可實行的產品運營方案。