阙值的代码
A. 图像的二值化处理的阈值是指什么求vc下的代码实现!
图像的二值化处理,是将256位的灰度图、或RGB的彩色图像转换成2位的黑白图像的过程。
在这个过程中,256位的灰度图,共有256级,变成黑白图像后,只有2级,这个需要定义一个值,以此值为界限,大于这个值就为白,小于这个值为黑,这个定义的值,就是阈值。处理时,阈值通常只有一个,但是也可以有两个,即只需要中间一段的灰度图像,如100~200的是白,其它的0~99和201~255都是黑。
彩色图像也是类似的道理,其可以根据RGB值(或HSI等颜色模型)各个分量进行阈值处理,得到黑白图像。
B. 有偿急求一个MATLAB图像局部阈值处理的代码
工具箱估计是没有的~如果你是多边形的话应该还是比较好做。曲边可能就麻烦了~
C. matlab阈值迭代法处理图像代码正确为什么出不来
使用erase函数的时候要特别小心,使用方法应该如下:k= sc.erase(k);
因为按照你的代码的意思,删除之后,迭代器指向删除元素的后一元素,
但是erase函数里面并没有完成后移的工作,而是用了返回下一元素迭代器的方式。
另外要注意不是每个路径都k++,只有不删除的时候才要k++,加个else,把k++放里面。
如有其它问题,可以继续追问。您的点赞是我前进的动力!
D. 怎样理解变换编码中的阈值编码
.com/kekewutao/blog/item/0bafc700d2849011728b65fd.html" target="_blank">http://hi..com/kekewutao/blog/item/0bafc700d2849011728b65fd.html
使用MATLAB设计小波变换程序中的若干问题3[转贴]
使用MATLAB设计小波变换程序中的若干问题仍需探讨的问题:为什么使用PNG存储经小波变换后的重构图像变大? 我曾在清华大学的多媒体课程的教师答疑中写了“老师:尊重事实:DB9阈值10的PNG文件就是比原文件大”和“续一:尊重事实:DB9阈值10的PNG文件就是比原文件大”,在林老师的鼓励和指导下,我进行了继续试验、分析,与刘赵璧(Anna)同学进行了探讨,并得到了Lily(姓名还不知道)同学的帮助,同时同学们也做了各自不同的实验,现在的实验结果可以说基本上比较明确,那就是有些图像就是会变大,这与图像的种类、纹理等密切相关。林老师曾经鼓励我去研究一下PNG的压缩方法,无奈我资质不够,至今在这方面的进展不大。由于临近期末考试,作业也要抓紧,所以我暂且将没有搞明白的内容搁置,待寒假期间再进行,希望对这些问题有各种看法也有兴趣研究的同学对此发表意见。以下是我最近试验、分析和阅读到的一些相关信息。试验结果 我首先根据老师第三章的Haar矩阵算法推演出DB9的系数矩阵,并实现了分解重构及阈值处理程序,对几种照片进行了比较,然后使用3.1节的simplecmp进行了相同照片的实验,结果相当一致。细小差别是因为我的程序对边界的扩展与MATLAB不一样,在设置阈值后引起了边界上小部分不一致造成的。表一:真彩色图像百合花的处理结果阈值 Png
Haar(Mat/Mine) 0数
Haat
(Mat/Mine) PNG
Db9
(MAT / Mine) 0数
Db9
(MAT / Mine)
95973 / 95973
0 95973 / 95973 27524 / 24268 95973 / 95973 27 / 9
5 74552 / 74292 135838 / 136063 101882 / 101992 167412 /165662
10 51976 / 51504 163423 / 163741 98411 / 98861 199200 / 195730
20 32474 / 32346 180167 / 180267 92295 / 93660 220629 / 217214
从对比表中我们能够看到2个程序的结果相当一致,因此,我不再给出两种程序的对比,而是使用simplecmp直接处理的结果说明。 将百合花图像使用[I,map]=rgb2ind(x,255);转换成为彩色图像处理,在将伪彩色图像转换为连续变换的灰度图像(如2.4常见问题中讨论的方法)进行处理:表二:百合花的伪彩色图像和处理后的灰度(gray)图像的处理结果阈值 Png
Haar(Index/Gray) 0数
Haar(Index/Gray) PN
Db9(Index/Gray) 0数
Db9
(Index/Gray)
48535 / 43235
0 48535 / 43235 6096/ 7430 48535/ 43235 18 / 22
5 53207 / 36450 9473/ 43626 60362 / 49927 7009 / 52852
10 58025 / 23602 13362/ 54344 64916 / 47813 13202 / 65881
20 60193/ 14347 21948 / 60039 66020/ 46014 24468 / 73494
其他伪彩色与进行加工的灰度图的结果与此完全一致,这也就说明了如果伪彩色文件的色板不是单调性递增就不适合小波分解。“The color bar to the right of the image is not smooth and does not monotonically progress from dark to light. This type of indexed image is not suitable for direct wavelet decomposition with the toolbox and needs to be preprocessed.”。我对 Facets进行同样的实验,结果与此一致。这种处理的结果可以从图像象素值的连续性来理解。这是处理与不处理的图像的中间一行的数据图。另外,不连续的图像质量在压缩后会被极大地破坏图2伪彩色文件变化前后的第128行数据的连续性情况对比分析 多种试验图片基本能够反映类似的结果,虽然Indexed Color image有时令Haar小波的分解重构图像出现增大现象,单经过处理之后,这种现象就会消失。然而对于DB9可以看到无论真彩色还是处理后的灰度图像都在阈值5 10处超过原始图像的大小,能不能因此得出DB9不适合进行图像压缩的结论呢?有一些同学确实这样认为,但我认为这种观点因为忽略了如何利用小波进行压缩和还原的过程,这也正是第四章老师为我们讲述的那些编码算法而造成的。在推荐材料[1]中也有类似的说明。图3、JPEG2000的基本结构看一下上图就可以明白为什么PNG不能衡量小波压缩的效率问题。上图的图像原始数据首先经过正变换(Forward Transform)就是小波变换的得到小波系数,变换的小波系数经过阈值处理后进行量化,编码后得到压缩的图像文件JPEG2000,如果你没有JPEG2000的显示程序,那么你就不能看到它。它的显示程序就是由解码器从压缩数据中解出编码,进行反量化,得到小波系数,再实施逆变换(Inverse Transform)就是小波系数重构。最终得到图像的原始数据。因此衡量小波变换的效率是应该看你选择的小波能不能分解出适合“编码器”压缩的小波系数,这种编码器不是PNG的LZ77,因为LZ77压缩小波分解系数的效率不是最好的。这种高效编码器在第四章可以找到。那么我们存储 PNG文件的目的是什么呢?我认为压缩与去噪(de-noising)是同一种方法的两种提法。他们都使用了设置阈值的方法。我们可以仔细分析经过重构的PNG图片的质量来体会这种消除噪音的效果,也可以评定小波压缩后的图片的视觉质量,同时PNG的文件大小也可以让我们从LZ77算法的本质来理解小波变换压缩后的重构图像的内容变化情况。比如,我们可以从表2中的灰度图像在haar变换取阈值20时出现块状象素,文件大小变为14347,而db9却为46014,超过原始的PNG大小,但并不出现块状而是具有波状的特征。这本身说明了采用Harr小波压缩或去噪后重构的图像中相同的‘串’增多,便于PNG方式压缩,而db9则在相同阈值的情况下不会象Haar那样制造‘马赛克’,说明了它的平滑性,这也能帮助我们理解小波的特性。当然,当阈值继续增加后,超过某一界限,即使DB9也仍然会使PNG文件大小减小。这本身也就是由双尺度(Dyadic)小波变换的两种滤波器决定的。低通滤波结果相当于平均值,高通滤波结果相当于差值,差值能够保证重构图像的细节部分丢失最小,如果差值部分被阈值略去的过多,细节就会越来越少,平均意义的值约来越多,直到多到某一个临界值时(该图像的阈值取到40),重构的图像也可能出现较多的相同数字串,这就会提高PNG的压缩结果。下图是我对Haar(蓝色)小波取阈值为20,db9(红色)小波阈值取40时第128行1:32列的数据曲线与原始数据(黑色)曲线的对比。可以看出也db9在阈值=40时出现了较多的平均值,但比haar在阈值=20时的曲线要少的多。图4、haar(蓝色)和db9(红色)压缩后重构图像的第128行,1:32列的数据曲线不过,MATLAB给我们提供了量化的方法来决定如何选取阈值。在HELP Wavelet Toolbox : Advance Concepts: Choosing the Optimal Decomposition中提到了几种利用“熵”的概念来衡量如何选取合适的分解级。感兴趣的同学还可以参看wentropy, wdcbm2, wpdec的帮助。文献[1]中也提到了衡量压缩质量的客观化方法MSE,PNSR并指出小波的重构滤波器的长度越长,形状越规则越能够提供良好的压缩性能。 上面对PNG的讨论因为没有足够的算法分析和程序解读,同时也没有准确的试验数据,因此只能作为猜测。但衡量小波压缩效率的方法我坚持认为不能以PNG文件大小来解说,如果采用图像文件大小来衡量,应该以JPEG2000来衡量。
E. 添加阈值鉴权规则,判断是否为空,代码如何写啊
添加阈值规则
打开一个负载测试。
在负载测试编辑器中展开“计数器集”节点。
在其中一个计数器集中展开一种“计数器类别”。 例如,可以选择“LoadTest:Scenario”。 展开该节点。
右击其中一个计数器,例如“LoadTest:Scenario”下的“用户负载”。 选择“添加阈值规则”。
将出现“添加阈值规则”对话框。
可以从两类规则中进行选择:“比较常数”规则和“比较计数器”规则。 选择适当的类型并对值进行设置。
望点赞,谢谢!
F. 阈值分割的算法或源代码
http://www.tianyablog.com/blogger/post_show.asp?BlogID=282197&PostID=3491592&idWriter=0&Key=0
G. 请写一C代码片段,实现一幅灰度图像的阙值化处理
阙值化处理比较好办
voidshreshold(unsignedcharA[128][128],unsignedchar*B[128],intsh)
{
//A为输入,B为输出,sh为阈值
inti,j;
for(i=0;i<128;i++)
for(j=0;j<128;j++)
{
if(A[i][j]>sh)
B[i][j]=220;
else
B[i][j]=10;
}
return;
}
该灰度线性变换的变换曲线 能否给个定义?B/A ?
H. 跪求MATLAB小波软硬阈值图象去噪的代码
%设置信噪比和随机种子值
snr=4;
init=2055615866;
%产生原始信号sref和高斯白噪声污染的信号s
[sref,s]=wnoise(1,11,snr,init);
%用db1小波对原始信号进行3层分解并提取系数
[c,l]=wavedec(s,3,'db1');
a3=appcoef(c,l,'db1',3);
d3=detcoef(c,l,3);
d2=detcoef(c,l,2);
d1=detcoef(c,l,1);
thr=1;
%进行硬阈值处理
ythard1=wthresh(d1,'h',thr);
ythard2=wthresh(d2,'h',thr);
ythard3=wthresh(d3,'h',thr);
c2=[a3 ythard3 ythard2 ythard1];
s3=waverec(c2,l,'db1');
%进行软阈值处理
ytsoftd1=wthresh(d1,'s',thr);
ytsoftd2=wthresh(d2,'s',thr);
ytsoftd3=wthresh(d3,'s',thr);
c3=[a3 ytsoftd3 ytsoftd2 ytsoftd1];
s4=waverec(c3,l,'db1');
%对上述信号进行图示
subplot(5,1,1);plot(sref);title('参考信号');
subplot(5,1,2);plot(s);title('染噪信号');
subplot(5,1,3);plot(s3);title('硬阈值处理');
subplot(5,1,4);plot(s4);title('软阈值处理');
I. MATLAB阈值去噪代码问题
for 循环写错了 ij 写成mn了