大数据成功
⑴ 简述身边大数据成功案例并且用了哪些大数据的数据达到什么效果
随着大数据时代的到来,大数据早已被逐步的运用在我们生活中的方方面面,那么除了之前众所周知的大数据杀熟事件,对于大数据你还了解多少呢?科学运用案例你又知道多少?今天就跟随千锋小编一起来看看。
洛杉矶警察局和加利福尼亚大学合作利用大数据预测犯罪的发生。
google流感趋势(Google Flu Trends)利用搜索关键词预测禽流感的散布。
统计学家内特.西尔弗(Nate Silver)利用大数据预测2012美国选举结果。
麻省理工学院利用手机定位数据和交通数据建立城市规划。
梅西百货的实时定价机制,根据需求和库存的情况,该公司基于SAS的系统对多达7300万种货品进行实时调价。
……
种种的案例实在是太多,或许我们永远说不完一样,所以我们就来看一看大数据被科学运用的一个经典案例:
“啤酒与尿布”的故事产生于20世纪90年代的美国沃尔玛超市中,沃尔玛的超市管理人员分析销售数据时发现了一个令人难于理解的现象:在某些特定的情况下,“啤酒”与“尿布”两件看上去毫无关系的商品会经常出现在同一个购物篮中,这种独特的销售现象引起了管理人员的注意,经过后续调查发现,这种现象出现在年轻的父亲身上。
如果这个年轻的父亲在卖场只能买到两件商品之一,则他很有可能会放弃购物而到另一家商店,直到可以一次同时买到啤酒与尿布为止。沃尔玛发现了这一独特的现象,开始在卖场尝试将啤酒与尿布摆放在相同的区域,让年轻的父亲可以同时找到这两件商品,并很快地完成购物;而沃尔玛超市也可以让这些客户一次购买两件商品、而不是一件,从而获得了很好的商品销售收入,这就是“啤酒与尿布” 故事的由来。
当然“啤酒与尿布”的故事必须具有技术方面的支持。1993年美国学者Agrawal提出通过分析购物篮中的商品集合,从而找出商品之间关联关系的关联算法,并根据商品之间的关系,找出客户的购买行为。艾格拉沃从数学及计算机算法角度提 出了商品关联关系的计算方法——Aprior算法。沃尔玛从上个世纪 90 年代尝试将 Aprior 算法引入到 POS机数据分析中,并获得了成功,于是产生了“啤酒与尿布”的故事。
其实大数据,其影响除了以上列举的方面外,它同时也能在经济、政治、文化等方面产生深远的影响,大数据可以帮助人们开启循“数”管理的模式,也是我们当下“大社会”的集中体现,三分技术,七分数据,得数据者得天下。
⑵ 大数据具体是什么东西,自学能成功么
大数据最大的特点是数据量大、种类多,记录了大量的细节、过程,存储了各种记录和信息。但是大数据,利用效率较低、质量差、内容繁杂、占用存储空间大。大数据记录太多数据,不一定都是需要的,有时重要的信息只占很低比例,这就是质量低、利用效率低。
大数据是一个行业或者一个领域内的数据集合,是一个庞大而复杂的体系。同样处理或应用这些数据的技术也多种多样,大数据的应用非常广泛,大数据被广泛的应用于风险模型建立、风险控制、辅助决策等方面。
大数据是人工智能、智慧城市等的基础,因为有大量数据,得以使人工智能快速训练、从大数据中提取经验;从大数据中获取重要信息、联合组网,形成规模宏大的智慧集群。大数据是中性的,有利有弊。要记录大数据、从大量数据中、获取有用的数据、筛滤信息、对有用数据进行提取、排序等,需要消耗大量的资源去处理。
⑶ 影响大数据项目成功的因素都有哪些
一般说来,一个大数据项目是否成功,取决于以下几个因素:
数据的完整获取——要做到这一点是很难的,尤其是对于大型集团母公司、机关单位主导的项目而言;
项目主体领导层的支持——这里说的支持,一定是彻底的支持,而不是最开始兴趣盎然,后期新鲜劲过了就不了了之;
对项目目标的深刻理解——项目做起来是做什么?数据的价值在哪里?这些都是要想清楚的,要基于业务来深层次考虑,不能拍脑袋决策;
控制成本——永远要考虑成本,考虑性价比,这样项目才能长久;
注重可视化——数据可视化,是项目呈现出来的形,人都是向往美好事物的,好的视觉效果,也是保证项目成功的关键。
⑷ 大数据可以应用在哪些领域有哪些成功的例子
大数据可以利用在很多的领域的,覆盖到各行各业,目前还没有那么的普及的,目前主要是金融,医疗,互联网,等等,典型的就是地图路况分析,那个就是根据大数据分析的结果得出来的结果啊。柠檬学院大数据。
⑸ 大数据应用成功的标准究竟是什么
大数据应用成功的标准究竟是什么
在大数据范畴大展拳脚肯定是个正确方向,同时世界各地的初创公司及企业巨头也在借力大数据和大数据应用创造价值——将大量的数据处理转化为金钱或竞争优势。然而光彩的背后,总是掩饰着一些不可忽视的真相。简而言之,不是所有在大数据上的尝试都得到了应有的回报,而且远非如此。同样这里也有另 一个不容忽视的真相,在IT企业界,大数据“成功”定义的标准非常宽松,甚至“我们并没有完全失败”这种的观念都可以归结于“成功”。
那么大数据应用成功的标准究竟是什么?10gen战略副总裁Matt Asay带来了他为成功总结的4个标准:
首先,必须要可以运作大数据应该为行业创造切实的价值,不止是高科技。McKinsey在关于大数据未来的报告中指出,大数据在医疗、政府、零售以及制造产业上拥有万亿的潜在价值。机构对大数据的成功实现需要在一下几个方面带来切实的收获:附加收益、提升客户满意度、削减成本等。
其次,必须有本质提高大数据交付的不应该只是渐进式的商务模式改善,更应该是本质上的突破。比如就初创企业Foursquare来说,为了发现数据之间的关系,Foursquare使用了机器学习算法让系统可以建立“Explore”,一个社交推荐系统可以实时的给用户推荐有价值的位置信息,使用新的业务模 式去驱动位置信息类型业务。“Explore”依赖大数据技术,同时从多于3000万个位置信息中获取见解。现在Foursquare已经具备了理解人们 之间如何进行互动的能力,并且位置信息也不只止步平台,而是真实世界。
再次,必须具备高速度 传统数据库技术会拉低大数据的性能,同样也是非常繁琐的,因为不管这项技术是否迎合你的需求,专利许可涉及到的企业繁琐制度远超出你的想 象。一个成功大数据项目,使用的工具集和数据库技术必须同时满足数据体积及多样性的双重需求。
论据是:一个Hadoop集群只需几个小时就可以搭建,搭建 完成后就可以提供快速的数据分析。事实上大部分的大数据技术都是开源的,这就意味着你可以根据你的需求添加支持和服务,同时许可不再是快速部署的阻碍之 一。 最后,必须能以前所不能 在大数据出现之前,类似Gilt Groupe这种“限时抢购”公司根本不可能实现。限时抢购网站需要日处理上千万用户的登陆,并且会造成非常高的服务器负载峰值——通过高性能、快速扩展的大数据技术让这种商业模型成为可能。
总结
大数据部署成败的关键不是系统每秒可以处理多少数据量,而是使用大数据后给公司业务带来了多少价值以及是否让业务有突破性的提升。专注业务类型,选择适合公司业务的工具集才是该重点关注的领域。
⑹ 基于大数据的成功应用有哪些
太多了!
我不想有太多文字叙述:
投资领域的,量化投资,国外的投资机构基本上都采用,国内的有个优矿网
金融领域的,风控,有贷前和贷后,太多公司在做,如迈宁数据、数尊
出行领域的,线路优化 有妙计旅行、滴滴和优步
消费品领域的,精准营销,百分点
医疗领域的,健康管理,23and me等等
安全领域:犯罪预测,Palantir,国内有个叫七巧板
⑺ 大数据应用成功的四个标准
大数据应用成功的四个标准
在大数据范畴大展拳脚肯定是个正确方向,同时世界各地的初创公司及企业巨头也在借力大数据和大数据应用创造价值——将大量的数据处理转化为金钱或竞争优势。然而光彩的背后,总是掩饰着一些不可忽视的真相。简而言之,不是所有在大数据上的尝试都得到了应有的回报,而且远非如此。同样这里也有另一个不容忽视的真相,在IT企业界,大数据“成功”定义的标准非常宽松,甚至“我们并没有完全失败”这种的观念都可以归结于“成功”。
那么大数据应用成功的标准究竟是什么?10gen战略副总裁Matt Asay带来了他为成功总结的4个标准:
首先,必须要可以运作
大数据应该为行业创造切实的价值,不止是高科技。McKinsey在关于大数据未来的报告中指出,大数据在医疗、政府、零售以及制造产业上拥有万亿的潜在价值。机构对大数据的成功实现需要在一下几个方面带来切实的收获:附加收益、提升客户满意度、削减成本等。
其次,必须有本质提高
大数据交付的不应该只是渐进式的商务模式改善,更应该是本质上的突破。比如就初创企业Foursquare来说,为了发现数据之间的关系,Foursquare使用了机器学习算法让系统可以建立“Explore”,一个社交推荐系统可以实时的给用户推荐有价值的位置信息,使用新的业务模式去驱动位置信息类型业务。“Explore”依赖大数据技术,同时从多于3000万个位置信息中获取见解。现在Foursquare已经具备了理解人们之间如何进行互动的能力,并且位置信息也不只止步平台,而是真实世界。
再次,必须具备高速度
传统数据库技术会拉低大数据的性能,同样也是非常繁琐的,因为不管这项技术是否迎合你的需求,专利许可涉及到的企业繁琐制度远超出你的想象。一个成功大数据项目,使用的工具集和数据库技术必须同时满足数据体积及多样性的双重需求。论据是:一个Hadoop集群只需几个小时就可以搭建,搭建完成后就可以提供快速的数据分析。事实上大部分的大数据技术都是开源的,这就意味着你可以根据你的需求添加支持和服务,同时许可不再是快速部署的阻碍之一。
最后,必须能以前所不能
在大数据出现之前,类似Gilt Groupe这种“限时抢购”公司根本不可能实现。限时抢购网站需要日处理上千万用户的登陆,并且会造成非常高的服务器负载峰值——通过高性能、快速扩展的大数据技术让这种商业模型成为可能。
总结
大数据部署成败的关键不是系统每秒可以处理多少数据量,而是使用大数据后给公司业务带来了多少价值以及是否让业务有突破性的提升。专注业务类型,选择适合公司业务的工具集才是该重点关注的领域。
⑻ 如何确保企业的大数据项目成功
如何确保企业的大数据项目成功
如何使您企业的大数据项目成功
考虑一个切实可行的办法。首先,不要将其称之为是一个“大数据项目”。将其命名为一个类似的项目名称:例如“一个帮助我们更好的了解我们的客户、以及为什么他们会喜欢在某个特定的商店购物的项目。”该项目是要回答重要的业务问题,而大数据便是答案的来源。如下,有一些最佳实践方案来帮助您的项目实现成功:
从列出一个您所想要解决的业务问题的清单入手
不要从解决某个大问题着手。从启动一个小的项目开始,选择一个您所亟待解决的具体的问题,并坚持下去。列出一份您所需要解答的问题的列表清单,并且不要因为被技术问题困住而忽视您的目标。确保IT团队的工作职责不会变得过于宽泛或所谓的“全方位”,这样可以尽量避免处理问题范围的改变进而导致的项目失败:即从业务部门到IT部门的需求的改变导致问题焦点的转移。确保所有利益相关方在客观上对于项目的实施和执行都是同意的,以便让每个人都能够专注于项目的完成。
在您开始项目之前获得企业高层的背书
一旦您已经确定您所要解决的业务问题,必须获得业务团队从上而下的对于您所需要的所有相关数据的支持,以保证成功完成项目。务必获得公司高层领导对于访问所有相关的业务数据的授权,以便您可以找到相关的模式和关系,进而解答业务问题。也就是说您必须获得访问、控制的权限。
确保您的团队具备执行项目所需的专业知识
理想的情况下,您的团队内部将会有成员接受过专业的训练,具备数据科学家的技能和心态,能够利用这些数据信息来生成所需的业务结果。如果不是的话,您可以利用您现有的系统来解决的问题。这是一个很好的退后一步来思考所需要解答的业务问题的时机。您可能在这时不需要经过专业的培训或NLP就能够得到您需要的答案,只是授予了合适的人员来访问企业内部的数据信息而已。
选择一个能够创造商业价值的问题,并在您已经正确的道路上持续的坚持下去。记住,一个成功的项目与其所涉及的范围是没有太大关系的。没必要一口气吃个胖子,那样反而会带来更大的失败。毕竟,一个小项目的成功要比一个大项目的失败要好得多。
⑼ 什么是大数据,大数据的典型案例有哪些
随着大数据时代的到来,大数据早已被逐步的运用在我们生活中的方方面面,那么除了之前众所周知的大数据杀熟事件,对于大数据你还了解多少呢?科学运用案例你又知道多少?今天就跟随千锋小编一起来看看。
洛杉矶警察局和加利福尼亚大学合作利用大数据预测犯罪的发生。
google流感趋势(Google Flu Trends)利用搜索关键词预测禽流感的散布。
统计学家内特.西尔弗(Nate Silver)利用大数据预测2012美国选举结果。
麻省理工学院利用手机定位数据和交通数据建立城市规划。
梅西百货的实时定价机制,根据需求和库存的情况,该公司基于SAS的系统对多达7300万种货品进行实时调价。
……
种种的案例实在是太多,或许我们永远说不完一样,所以我们就来看一看大数据被科学运用的一个经典案例:
“啤酒与尿布”的故事产生于20世纪90年代的美国沃尔玛超市中,沃尔玛的超市管理人员分析销售数据时发现了一个令人难于理解的现象:在某些特定的情况下,“啤酒”与“尿布”两件看上去毫无关系的商品会经常出现在同一个购物篮中,这种独特的销售现象引起了管理人员的注意,经过后续调查发现,这种现象出现在年轻的父亲身上。
如果这个年轻的父亲在卖场只能买到两件商品之一,则他很有可能会放弃购物而到另一家商店,直到可以一次同时买到啤酒与尿布为止。沃尔玛发现了这一独特的现象,开始在卖场尝试将啤酒与尿布摆放在相同的区域,让年轻的父亲可以同时找到这两件商品,并很快地完成购物;而沃尔玛超市也可以让这些客户一次购买两件商品、而不是一件,从而获得了很好的商品销售收入,这就是“啤酒与尿布” 故事的由来。
当然“啤酒与尿布”的故事必须具有技术方面的支持。1993年美国学者Agrawal提出通过分析购物篮中的商品集合,从而找出商品之间关联关系的关联算法,并根据商品之间的关系,找出客户的购买行为。艾格拉沃从数学及计算机算法角度提 出了商品关联关系的计算方法——Aprior算法。沃尔玛从上个世纪 90 年代尝试将 Aprior 算法引入到 POS机数据分析中,并获得了成功,于是产生了“啤酒与尿布”的故事。
其实大数据,其影响除了以上列举的方面外,它同时也能在经济、政治、文化等方面产生深远的影响,大数据可以帮助人们开启循“数”管理的模式,也是我们当下“大社会”的集中体现,三分技术,七分数据,得数据者得天下。