大数据医疗面临人才问题
Ⅰ 请分析一下大数据在医疗行业的应用中面临的挑战有哪些
1、数据质量
目前医疗数据的来源主要为医疗机构(例如医院、医学药学实验室、医疗康复中心等)和互联网。采集的数据范 围广、维度高、类型种类繁多且不针对 特定的问题。
2、不确定性的度量问题
目前比较成熟且进入实用阶段的大数 据模型多数都是面向药厂和保险公司的。美国的医疗大数据应用中,面向医生和患 者业务通常较难,很难找到合适的切入点。面向企业的业务相对容易,尤其是针对保 险公司和药厂,而医院则相对难一些。由于大数据模型精度有限,在安全性要求极 高的医院和医生中其实用价值非常有限,例如,一个95%准确度的模型对医生来说可能仍然不够精确,因为医生在决策时是针对患者个体的,而不是基于统计意义的。
另外,统计学习模型的可解释性也较差,往往只有统计学家和计算机科学家才能精确完整地解释模型,而对于模型真正的使用者如医生和政府官员等存在巨大的障碍。
Ⅱ 目前大数据发展面临哪些问题
随着2017年大数据应用的发展,大数据价值得以充分的体现,大数据在企业和专社会层面成为重要的战略资属源,数据成为新的战略制高点,是大家抢夺的新焦点。一个新行业的出现,必将在工作职位方面有新的需求,大数据的出现也将推出一批新的就业岗位,例如,数据产品经理、大数据算法工程师、大数据分析师、数据管理专家等等。具有丰富经验的数据分析人才将成为稀缺的资源,数据驱动型工作将呈现爆炸式的增长。去 大 讲台咨询下,推出在线运用科学混合式自适应学习系统组织线上教学,希望可以帮助到你。
Ⅲ 现在互联网医疗所面临的问题有哪些
首先是缺乏顶层设计和法律基础,针对互联网医疗行为、互联网医疗纠回纷方面缺乏政策设计和答法规细则。第二是政府管理和社会治理体系不健全,政府部门之间应建立协同机制,企业和社会也应该在互联网+医疗中发挥出更积极的作用。第三是互操作标准的缺失,互联网医疗涉及多领域、多学科、多机构、多系统之间的信息交换和共享,既要开发完善现有的标准体系,又要推进信息标准化的策略和方法的研究和实践。第四是隐私与信息安全保护制度和技术规范不够健全,导致信息难以共享,信息持有者对信息拿出去共享缺乏信心。第五是技术和人才短缺。
Ⅳ 大数据医疗发展的意义是怎样的
数据共享,医疗共享。节省医疗资源和稀缺资源,更有效的利用稀缺资源,让医疗技术不发达的确也能享受到高质量的医疗条件。理论前景是比较光明的,路途并不是那么好走,不过都在不断的探索中前行着,前景很好。
Ⅳ 请分析大数据在医疗行业的应用中面临的挑战有哪些方面
1、数据质量
目前医疗数据的来源主要为医疗机构(例如医院、医学药学实验室、医疗康复中心等)和互联网。采集的数据范 围广、维度高、类型种类繁多且不针对 特定的问题。
2、不确定性的度量问题
目前比较成熟且进入实用阶段的大数 据模型多数都是面向药厂和保险公司的。美国的医疗大数据应用中,面向医生和患 者业务通常较难,很难找到合适的切入点。面向企业的业务相对容易,尤其是针对保 险公司和药厂,而医院则相对难一些。由于大数据模型精度有限,在安全性要求极 高的医院和医生中其实用价值非常有限,例如,一个95%准确度的模型对医生来说可能仍然不够精确,因为医生在决策时是针对患者个体的,而不是基于统计意义的。
另外,统计学习模型的可解释性也较差,往往只有统计学家和计算机科学家才能精确完整地解释模型,而对于模型真正的使用者如医生和政府官员等存在巨大的障碍。
Ⅵ 医疗大数据的分析和挖掘发展现状如何未来会有什么样的应用前景
如今是大数据时代,前景自然好了,据前瞻产业研究院《2016-2021年中国行业大数据市场发展前景预测与投资战略规划分析报告》显示,总的来说,医疗大数据应用主要体现在临床操作、研发、新的商业模式、付款/定价、公众健康五大领域,在这些场景中,大数据的分析和应用都将发挥巨大的作用。
医疗大数据的应用对于临床医学研究、科学管理和医疗服务模式转型发展都具有重要意义,而大数据技术的运用前景是十分光明的。
医院和医疗行业面临的大数据主要有医学影像、视频(教学、监控)及文献等非结构化数据。由于这些数据增长很快且结构复杂,给数据管理和利用带来较大的压力,存储与管理成本不断提高,数据利用困难、利用率低。除了数据数量和形态的迅速增加,医疗数据还需要越来越长的保留期。一旦存储系统的安全性出现问题,导致医疗数据丢失,医院会面临严重不良局面。医疗大数据的应用要保证数据的全面性、准确性、实时性和使用的便捷性,要能快速运算和快速展现,要与日常工作平台紧密结合。
国人已经把健康大数据上升为国家战略,而面对“大数据”的挑战,医院必须考虑三大主要问题。
(1) 数据存储是否安全可靠?因为系统一旦出现故障,首先考验的就是数据的存储、灾备和恢复能力。如果数据不能迅速恢复,而且恢复不能到断点,则将对医院的业务、患者满意度构成直接损害。
(2) 如何提高医院运行和服务的效率?提高效率就是节省医生的时间,从而缓解医疗资源的紧张状况,在一定程度上可以帮助解决“看病难”的问题。
(3) 如何控制大数据的成本?存储架构是否合理,不仅影响医院IT系统的成本,而且关乎医院的运营成本,医疗数据激增,使医院普遍存在着较大的存储扩容压力。如今,医院的存储设备大多是由不同厂商构成的完全异构的存储系统。这些不同的存储设备利用各自不同的软件工具来进行控制和管理,这样就增加了整个系统的复杂性,使管理成本非常高。
未来,大数据必将影响医疗行业,未来医疗行业的大数据将会具体应用在:临床辅助决策,医疗质量监管,疾病预测模型,临床实验分析。其发展空间有:个人健康门户,慢病管理和健康管理,电子病历和临床质量监控,医学知识管理,临床路径和循证医学,远程医疗和移动医疗,医学研究数据仓库和共享平台,跨医疗机构协作平台。
Ⅶ 为什么医疗大数据的落实这么难
医疗大数据的落实难主要有这几点:
1、数据获取难度大;
2、着数据关联度低;内
3、数据记录不完整;
4、数据利用容率低等问题。
而造成这些问题的主要原因是医疗信息系统建设早,缺乏整体规划,数据统计有多个系统来源,导致数据统计口径不一,管理措施难以落实,难以形成对临床知识的管理和积累决策分析支持不得力,业务应用压力过大。
Ⅷ 大数据在医疗行业的应用面临的挑战有哪些方面
1、数据质量
目前医疗数据的来源主要为医疗机构(例如、医学药学实验室、医疗康复中心等)和互联网。采集的数据范 围广、维度高、类型种类繁多且不针对 特定的问题。
2、不确定性的度量问题
目前比较成熟且进入实用阶段的大数 据模型多数都是面向药厂和保险公司的。美国的医疗大数据应用中,面向医生和患 者业务通常较难,很难找到合适的切入点。面向企业的业务相对容易,尤其是针对保 险公司和药厂,而则相对难一些。由于大数据模型精度有限,在安全性要求极 高的和医生中其实用价值非常有限,例如,一个95%准确度的模型对医生来说可能仍然不够精确,因为医生在决策时是针对患者个体的,而不是基于统计意义的。
另外,统计学习模型的可解释性也较差,往往只有统计学家和计算机科学家才能精确完整地解释模型,而对于模型真正的使用者如医生和政府官员等存在巨大的障碍。