大数据的就业前景怎么样

从发现情景来看,
大数据一定是未来10年的热点。
任何系统、任何公司的核心都是专数据。现在流行hadoop,流行内属存计算、内存数据网格等等,以后还会有更多的概念和技术,但本质都是为大数据服务。
数据TB、PB、EB、ZB、YB的飙升,将诞生系列新的技术和产业。而对技术人员,新生的数据科学家Data Scientists,将是最有发展前景的职业。

❷ 大数据智能化为何能让生活更“智慧”

8月24日,智博会上,“智慧别墅”工作人员展示“智慧镜”的功能。

如今,随着互联网、大数据、人工智能迅猛发展,大数据、智能化正飞入寻常百姓家中,生活变得无限可能。当未来家居生活长出“智慧大脑”,交通出行插上“智慧翅膀”,医疗健康安上“智慧心脏”……智能融合将为人们的生活增添更多色彩。

❸ 什么是大数据概念

在很多人的眼里大数据可能是一个很模糊的概念,但是,在日常生活中大数据有离我们很近,我们无时无刻不再享受着大数据所给我们带来的便利,个性化,人性化。全面的了解大数据我们应该从四个方面简单了解。定义,结构特点,我们身边有哪些大数据,大数据带来了什么,这四个方面了解。
那么“大数据”到底是什么呢?

在麦肯锡全球研究所给出的定义中指出:大数据即是一种规模大到在获取,存储,管理,分析方面大大超出了传统数据库软件工具能力范围的数据集合。简单而言大数据是数据多到爆表。大数据的单位一般以PB衡量。那么PB是多大呢?1GB=1024MB ,1PB=1024GB才足以称为大数据。

如图:

衡量单位一览表
其次,大数据具有什么样的特点和结构呢?

大数据从整体上看分为四个特点,
第一,大量。

衡量单位PB级别,存储内容多。
第二,高速。

大数据需要在获取速度和分析速度上要及时迅速。保证在短时间内更多的人接收到信息。
第二,多样。

数据的来源是各种渠道上获取的,有文本数据,图片数据,视频数据等。因此数据是多种多样的。
第三,价值。

大数据不仅仅拥有本身的信息价值,还拥有商业价值。大数据在结构上还分为:结构化,半结构化,非结构化。结构化简单来讲是数据库,是由二维表来逻辑表达和实现的数据。非结构化即数据结构不规则或不完整,没有预定义的数据模型。由人类产生的数据大部分是非结构化数据。

❹ 大数据的最大价值: 大数据+物体=智能

大数据的最大价值: 大数据+物体=智能

人与物体,是地球的两大类,人是地球上最高级的动物,物体(动物,植物,生物,微生物,人造物体)不能制造,人拥有智慧,人主宰了这个地球;

但现在,大数据对于物体如同知识对于人脑一样,如果物体利用大数据的核心技术 (机器学习,自然语言处理,数学建模,人机交互,语音识别,大数据分析、数据可视化) 可以加工数据到信息再到智慧,去做支撑,那么随着数据存的越多,处理的越好,利用的越有效,物体拥有的智能就如同人一样拥有智慧。因此大数据的出现为人类生产智能的商品提供了一种强大的能力,我们发现大数据+物体=智能;

我认为这就是大数据对于我们的魅力所在这,与其叫大数据时代,我更愿意叫智能时代,我们处在这个时代爆发的前期;

例如:

大数据+手环=智能手环
大数据+眼镜=智能眼镜
大数据+汽车=无人驾驶
大数据+马桶=智能马桶
大数据+笔=智能笔
大数据+家居=智能家居
大数据+服装=智能服装
大数据+花瓶=智能花瓶
大数据+鞋子=智能鞋子
大数据+电灯=智能电灯
大数据+厨具=智能厨具
大数据+自行车=智能自行车

所以随着大数据所涉及的数据采集、数据管理、数据分析等技术的发展:

1)未来,所有物体都会拥有智能。

2)未来,所有的物体都会成为类人脑;

3)未来,所有的物体都会联网;

4)未来,所有的物体会相互制约发展,不是以原始生态制约,而是以商业制约;

5)未来, 物体和人的对话将无处不在;

那为什么说,大数据的最大价值是 大数据+物体=智能呢?

1)数据是为人服务的,人接触最多的是物体;

2)数据的智慧将延伸人的五官,拓展人的四肢,这些都依赖硬件;

3)数据作为一种软资源,必须借助物体才能更好的发挥它的价值;

4)物体是数据的最佳载体;

因此:当我们在研究大数据产业时,智能硬件才是核心研究对象,哪些硬件需要什么样的数据,如何去满足这种数据需求,如何节省资源,如何提高数据利用率,如何考虑硬件之间的数据交换和流动才是最重要的。而非老的IT思维大数据的技术生态和数据生产,数据交易,数据需求方本身。前者是用户和数据驱动的生态,后者是后台驱动的生态,因为终端决定后台,消费者决定市场!这个终端就是各种智能硬件!

那么让我们来,首先我们来看看国内的智能硬件市场布局:京东,小米、网络,腾讯;

1)京东

强在销售能力,目前已经占据智能硬件销售的近40%份额,据了解,在售的近1000个智能硬件主流品牌中有95%以上都选择京东作为首发平台,其地位可见一斑。依托这方面的优势,京东利用渠道的优势和平台的优势,扶持中小智能硬件厂商,同时结合生态链中的各个环节,打造最强智能硬件聚集平台。

2)小米

优势在于爆品打造上,小米手机就是一个很强的典型,小米希望将这个优势在智能硬件领域进行复制。所以小米的思路很清晰,那就是选择细分领域,抓住一个产品,对公司进行投资入股,联合进行产品开发,共同进行营销推广,打造爆品,进而形成自己的智能硬件生态体系。

3)网络

依托在网络云上的技术优势,以开放的态度,构建“网络 Inside”的智能硬件生态。在这个生态体系中,除了硬件厂商之外,还有应用开发者、渠道商等。例如,网络和京东合作,发布了JD+计划,为智能硬件厂商提供全套解决方案。

4)腾讯

则依托自己的QQ和微信两大社交系统,分别构建了QQ物联和微信硬件两大智能硬件开放平台。今年4月,腾讯发布Tencent OS(TOS)操作系统,并推出TOS+智能硬件开放平台战略,并推出腾讯众创空间,更多的是将腾讯成熟的开发者分成、流量分成和内容付费等模式推向智能领域。

除此之外,阿里巴巴、360、乐视等公司也在加紧推进推进智能硬件策略,例如360采用单品突破的方式,推出了随身WiFi、安全路由、安全手环等产品。阿里巴巴则行动较晚,今年四月才成立智能生活事业部,进行相关资源整合全面发力。但这些公司相比起来还不足于撼动网络、腾讯、京东和小米的四雄并起格局。

我们在来看看国外的智能硬件发展:

美国几年前产生了一大批纯互联网和软件企业,如谷歌、亚马逊、AUTODESK、Facebook,如今这些公司还在聚焦“互联网+”吗?当然没有了。在“新硬件时代”到来之时,这些科技巨头都在布局围绕硬件的产业。谷歌过去是一家纯互联网公司,如果不打开它的网站,开始谷歌搜索或谷歌地图,你体会不到它的存在。但是现在不一样了,大街上,一些很酷的人带着谷歌眼镜,招摇过市,一些更酷的人开着谷歌无人驾驶汽车在美国四个州拉风(更确切的说“乘坐无人驾驶汽车”),军队里那些懒散的士兵,把沉重的背包放在谷歌智能机器驮驴(BOSTONDYNAMICS制造,被谷歌收购)上,自己悠闲地散步;亚马逊先造出了电子阅读器KINDLE,现在正在完善多轴无人飞行器为它送快递;AUTODESK利用3D打印机打出来的假肢让残疾人变成了炫酷人群;Facebook用虚拟设备让年轻人体验“真实世界”。更不用说亿隆马斯克,卖了PAYPAL后造纯电动车“特斯拉”,现在又在玩可回收火箭和制造“超级电池”;而苹果用智能手机在引领了“新硬件时代”后,又推出了智能手表。(以上来自网络的报道)

从国内外的互联巨头的投资动向不难看出,传统的盈利的大数据公司开始涉足硬件市场,利用其固有的软件技术整合硬件厂商快速的占据市场的有利位置。硬件是连接线上与线下的重要组成手段。所以笔者以为智能硬件这才是大数据正在的用武之地,才是大数据最终的价值所在!

然而任何一种技术都会随着商业的普及而兴起,遇到政策(法律、法规、利益分配)会做修正,进而成为一种惠及社会,企业,个人的众人皆知的惠民技术,以满足人性对于技术的依赖,对物质的依赖。大数据也不例外,目前大数据还在目前的大数据仍停留在概念系统建设的初级阶段,解决现有数据量增加、处理速度快速处理的问题,很少有大数据平台真正运用自身的大数据,完成真正的产品创新,而非渠道的拓展。就技术收益而言,营销的:商品推荐、广告推荐、阅读推荐、人才推荐、旅游推荐搜索优化都是有收益的;就安全而言:有合规、预警和智能巡检,是可以节省成本的、提高效率的;就产品创新而言,没有见到实物的产品创新案例;而大数据驱动的制造业的变革,正是风口。

作为制造业大国,如果我们所有的生产制造型企业,销售服务型企业都和大数据挂钩,大数据+制造企业=中国智能,。那么属于我们时代将真正来临;

数据思维和技术,是这个时代的核心驱动力;更是智能时代的核心竞争力!大数据为人类制造出智能的物体提供了无限的可能,等待大数据通过硬件惠及到每一个普通人的时候,我们将时刻感受到,科技让生活更美好,大数据让生活更智能!可以预见,未来,智能时代!

最后我们一起思考一个问题:中国是制造业大国,我们把目光放远一点,继续向前看,尽快制造出全球免费的硬件产品,通过硬件布局数据产业是不是更好呢?

❺ 大数据时代,对于我们普通人来说,有什么好处

最简单的就是生活更加方便,比如购物可以网购,支付可以全靠手机,互联网带给我们的便捷是有目共睹的,大数据时代我们深受其益。

❻ 现在搞大数据有前途吗

搞大数据肯定是有前途的,毕竟如今是互联网膨胀的时代,什么都开始依赖数专据来说属事或提供决策,人工智能火爆更是大数据的一个佐证。不过当前大数据相应岗位的优待还是集中在大公司,创业公司也有,不过难遇。所以你如果是想转行进入大数据,那打好基础充实自己的技能是必不可少的。如果你是想在现有岗位提升自己的专业实力来提高竞争力,不被优胜劣汰,那就应该好好学习一下大数据,让它成为你的优势。

❼ 你所了解的大数据,是真正的大数据吗

什么是大数据

大数据是指无法在一定时间内用常规软件工具对其内容进行抓取、管理和处理的数据集合。大数据技术,是指从各种各样类型的数据中,快速获得有价值信息的能力。适用于大数据的技术,包括大规模并行处理(MPP)数据库,数据挖掘电网,分布式文件系统,分布式数据库,云计算平台,互联网,和可扩展的存储系统。

大数据时代存储所面对的问题

随着大数据应用的爆发性增长,它已经衍生出了自己独特的架构,而且也直接推动了存储、网络以及计算技术的发展。毕竟处理大数据这种特殊的需求是一个新的挑战。硬件的发展最终还是由软件需求推动的,就这个例子来说,我们很明显的看到大数据分析应用需求正在影响着数据存储基础设施的发展。

从另一方面看,这一变化对存储厂商和其他IT基础设施厂商未尝不是一个机会。随着结构化数据和非结构化数据量的持续增长,以及分析数据来源的多样化,此前存储系统的设计已经无法满足大数据应用的需要。存储厂商已经意识到这一点,他们开始修改基于块和文件的存储系统的架构设计以适应这些新的要求。在这里,我们会讨论哪些与大数据存储基础设施相关的属性,看看它们如何迎接大数据的挑战。

容量问题

这里所说的“大容量”通常可达到PB级的数据规模,因此,海量数据存储系统也一定要有相应等级的扩展能力。与此同时,存储系统的扩展一定要简便,可以通过增加模块或磁盘柜来增加容量,甚至不需要停机。基于这样的需求,客户现在越来越青睐Scale-out架构的存储。Scale-out集群结构的特点是每个节点除了具有一定的存储容量之外,内部还具备数据处理能力以及互联设备,与传统存储系统的烟囱式架构完全不同,Scale-out架构可以实现无缝平滑的扩展,避免存储孤岛。

“大数据”应用除了数据规模巨大之外,还意味着拥有庞大的文件数量。因此如何管理文件系统层累积的元数据是一个难题,处理不当的话会影响到系统的扩展能力和性能,而传统的NAS系统就存在这一瓶颈。所幸的是,基于对象的存储架构就不存在这个问题,它可以在一个系统中管理十亿级别的文件数量,而且还不会像传统存储一样遭遇元数据管理的困扰。基于对象的存储系统还具有广域扩展能力,可以在多个不同的地点部署并组成一个跨区域的大型存储基础架构。

延迟问题

“大数据”应用还存在实时性的问题。特别是涉及到与网上交易或者金融类相关的应用。举个例子来说,网络成衣销售行业的在线广告推广服务需要实时的对客户的浏览记录进行分析,并准确的进行广告投放。这就要求存储系统在必须能够支持上述特性同时保持较高的响应速度,因为响应延迟的结果是系统会推送“过期”的广告内容给客户。这种场景下,Scale-out架构的存储系统就可以发挥出优势,因为它的每一个节点都具有处理和互联组件,在增加容量的同时处理能力也可以同步增长。而基于对象的存储系统则能够支持并发的数据流,从而进一步提高数据吞吐量。

有很多“大数据”应用环境需要较高的IOPS性能(IOPS (Input/Output Operations Per Second),即每秒进行读写(I/O)操作的次数,多用于数据库等场合,衡量随机访问的性能),比如HPC高性能计算。此外,服务器虚拟化的普及也导致了对高IOPS的需求,正如它改变了传统IT环境一样。为了迎接这些挑战,各种模式的固态存储设备应运而生,小到简单的在服务器内部做高速缓存,大到全固态介质的可扩展存储系统等等都在蓬勃发展。

并发访问一旦企业认识到大数据分析应用的潜在价值,他们就会将更多的数据集纳入系统进行比较,同时让更多的人分享并使用这些数据。为了创造更多的商业价值,企业往往会综合分析那些来自不同平台下的多种数据对象。包括全局文件系统在内的存储基础设施就能够帮助用户解决数据访问的问题,全局文件系统允许多个主机上的多个用户并发访问文件数据,而这些数据则可能存储在多个地点的多种不同类型的存储设备上。

安全问题

某些特殊行业的应用,比如金融数据、医疗信息以及政府情报等都有自己的安全标准和保密性需求。虽然对于IT管理者来说这些并没有什么不同,而且都是必须遵从的,但是,大数据分析往往需要多类数据相互参考,而在过去并不会有这种数据混合访问的情况,因此大数据应用也催生出一些新的、需要考虑的安全性问题。

成本问题

“大”,也可能意味着代价不菲。而对于那些正在使用大数据环境的企业来说,成本控制是关键的问题。想控制成本,就意味着我们要让每一台设备都实现更高的“效率”,同时还要减少那些昂贵的部件。目前,像重复数据删除等技术已经进入到主存储市场,而且现在还可以处理更多的数据类型,这都可以为大数据存储应用带来更多的价值,提升存储效率。在数据量不断增长的环境中,通过减少后端存储的消耗,哪怕只是降低几个百分点,都能够获得明显的投资回报。此外,自动精简配置、快照和克隆技术的使用也可以提升存储的效率。

很多大数据存储系统都包括归档组件,尤其对那些需要分析历史数据或需要长期保存数据的机构来说,归档设备必不可少。从单位容量存储成本的角度看,磁带仍然是最经济的存储介质,事实上,在许多企业中,使用支持TB级大容量磁带的归档系统仍然是事实上的标准和惯例。

对成本控制影响最大的因素是那些商业化的硬件设备。因此,很多初次进入这一领域的用户以及那些应用规模最大的用户都会定制他们自己的“硬件平台”而不是用现成的商业产品,这一举措可以用来平衡他们在业务扩展过程中的成本控制战略。为了适应这一需求,现在越来越多的存储产品都提供纯软件的形式,可以直接安装在用户已有的、通用的或者现成的硬件设备上。此外,很多存储软件公司还在销售以软件产品为核心的软硬一体化装置,或者与硬件厂商结盟,推出合作型产品。

数据的积累

许多大数据应用都会涉及到法规遵从问题,这些法规通常要求数据要保存几年或者几十年。比如医疗信息通常是为了保证患者的生命安全,而财务信息通常要保存7年。而有些使用大数据存储的用户却希望数据能够保存更长的时间,因为任何数据都是历史记录的一部分,而且数据的分析大都是基于时间段进行的。要实现长期的数据保存,就要求存储厂商开发出能够持续进行数据一致性检测的功能以及其他保证长期高可用的特性。同时还要实现数据直接在原位更新的功能需求。

灵活性

大数据存储系统的基础设施规模通常都很大,因此必须经过仔细设计,才能保证存储系统的灵活性,使其能够随着应用分析软件一起扩容及扩展。在大数据存储环境中,已经没有必要再做数据迁移了,因为数据会同时保存在多个部署站点。一个大型的数据存储基础设施一旦开始投入使用,就很难再调整了,因此它必须能够适应各种不同的应用类型和数据场景。

应用感知

最早一批使用大数据的用户已经开发出了一些针对应用的定制的基础设施,比如针对政府项目开发的系统,还有大型互联网服务商创造的专用服务器等。在主流存储系统领域,应用感知技术的使用越来越普遍,它也是改善系统效率和性能的重要手段,所以,应用感知技术也应该用在大数据存储环境里。

小用户怎么办?

依赖大数据的不仅仅是那些特殊的大型用户群体,作为一种商业需求,小型企业未来也一定会应用到大数据。我们看到,有些存储厂商已经在开发一些小型的“大数据”存储系统,主要吸引那些对成本比较敏感的用户。