大数据奥巴马
❶ 谈谈美国是如何运用大数据来维护国家安全。300字
美国政府将大复数据视为强化美国竞制争力的关键因素之一,把大数据研究和生产计划提高到国家战略层面。3月29日,奥巴马政府宣布投资2亿美元启动《大数据研究和发展计划》,希望增强收集海量数据、分析萃取信息的能力。以美国科学与技术政策办公室(OSTP)为首,国土安全部、美国国家科学基金会、国防部、美国国家安全局、能源部等已经开始了与民间企业或大学开展多项大数据相关的各种研究开发。美国政府为之拨出超过2亿美元的研究开发预算。奥巴马指出,通过提高从大型复杂的数字数据集中提取知识和观点的能力,承诺帮助加快在科学与工程中的步伐,改变教学研究,加强国家安全。据悉,美国国防部已经在积极部署大数据行动,利用海量数据挖掘高价值情报,提高快速响应能力,实现决策自动化。而美国中央情报局通过利用大数据技术,将分析搜集的数据时间由63天缩减到27分钟。
❷ 哪一年 奥巴马 将大数据上升为国家意志
2012年3月22日,奥巴马政府宣布投资2亿美元拉动大数据相关产业发展,将“大数据战略”上升为国家意志。
❸ 大数据时代处理数据的三大转变
大数据时代处理数据的三大转变
大数据概念的横空出世,有赖于短短几年出现的海量数据。据统计,互联网上的数据每两年翻一番,而目前世界上90%以上的数据都是最近几年才产生的。当然,海量数据仅仅是“大数据”概念的一部分,只有具备4个“V”的特征,大数据的定义才算完整,而价值恰恰是决定大数据未来走向的关键。
大数据发展必备三个条件
大数据的发展需要三个必要条件:数据源、数据交易、数据产生价值的过程。近年来,社交网络的兴起、物联网的发展和移动互联网的普及,诞生了大量有价值的数据源,奠定了大数据发展的基础。大数据时代到来的重要标志,则是大批专业级“数据买卖商”的出现,以及围绕数据交易形成的,贯穿于收集、整理、分析、应用整个流程的产业链条。大数据发展的核心,则是使用户从海量的非结构化数据和半结构化数据中获得了新的价值,数据价值是带动数据交易的原动力。
IBM、甲骨文、SAP近年纷纷斥巨资收购数据管理和分析公司,在这些互联网巨头的带动下,数据分析技术日渐成熟。2013年6月,爱德华·斯诺登将“棱镜计划”公之于众,“棱镜门”事件一方面说明大数据技术已经成熟;另一方面也佐证了现在阻碍大数据发展的不是技术,而是数据交易和数据价值。
大数据技术的发展促进了云计算的落地,云计算的部署完成又反过来加大了市场对数据创造价值的期待。大数据概念提出之后,市场终于看到了云计算的获利方向:各地的一级系统集成商与当地政府合作,建云数据中心;各大行业巨头在搭建各自行业的云平台;IT巨头想尽办法申请中国的公有云牌照。大数据促成了云计算从概念到落地。借助于智慧城市概念的普及,云计算基础设施已基本准备就绪,一方面完成了大数据应用的硬件基础;另一方面迫于回收云计算投资的压力,市场急需应用部署,大数据恰如雪中送炭,被市场寄予厚望。
现在,问题的核心指向了“数据如何创造价值?”
整合与开放是基石
大数据服务创业公司Connotate对800多名商业和IT主管进行了调查。结果显示,60%受调查者称:“目前就说这些大数据投资项目肯定能够带来良好回报尚为时过早。”之所以如此,是由于当前大数据缺乏必需的开放性:数据掌握在不同的部门和企业手中,而这些部门和企业并不愿意分享数据。大数据是通过研究数据的相关性来发现客观规律,这依赖于数据的真实性和广泛性,数据如何做到共享和开放,这是当前大数据发展的软肋和需要解决的大问题。
2012年美国大选,奥巴马因数据整合而受益。在奥巴马的竞选团队中有一个神秘的数据挖掘团队,他们通过对海量数据进行挖掘帮助奥巴马筹集到10亿美元资金;他们通过数据挖掘使竞选广告投放效率提升了14%;他们通过制作“摇摆州”选民的详细模型,每晚实施6.6万次模拟选举,推算奥巴马在“摇摆州”的胜率,并以此来指导资源分配。奥巴马竞选团队相比罗姆尼竞选团队最有优势的地方:对大数据的整合。奥巴马的数据挖掘团队也意识到这个全世界共同的问题:数据分散在过多的数据库中。因此,在前18个月,奥巴马竞选团队就创建了一个单一的庞大数据系统,可以将来自民意调查者、捐资者、现场工作人员、消费者数据库、社交媒体,以及“摇摆州”主要的民主党投票人的信息整合在一起,不仅能告诉竞选团队如何发现选民并获得他们的注意,还帮助数据处理团队预测哪些类型的人有可能被某种特定的事情所说服。正如竞选总指挥吉姆·梅西纳所说,在整个竞选活中,没有数据做支撑的假设很少存在。
2012年3月,美国奥巴马政府宣布投资2亿美元启动“大数据研究和发展计划”,将“大数据研究”上升为国家意志。一个国家拥有数据的规模和运用数据的能力将成为综合国力的重要组成部分。国内智慧城市建设目标之一就是实现数据的集中共享。
合作共赢的商业模式
随着云计算、大数据技术和相关商业环境的不断成熟,越来越多的“软件开发者”正在利用跨行业的大数据平台,打造创新价值的大数据应用,而且这一门槛正在不断降低。因为首先,数据拥有者能够以微乎其微的成本获取额外的收入,提高利润水平;其次,大数据设备厂商需要应用来吸引消费者购买设备,发展合作共赢的伙伴关系势必比单纯销售设备要有利可图,一些具有远见的厂商已经开始通过提供资金、技术支持、入股等方式来扶持这些“软件开发者”;第三,行业细分市场的数据分析应用需求在不断加大,对于整个大数据产业链来说,创新型的行业数据应用开发者必将是未来整个大数据产业链中最为活跃的部分。
未来,有三种企业将在”大数据产业链“中处于重要地位:掌握海量有效数据的企业,有着强大数据分析能力的企业,以及创新的“软件开发者”。社交网络、移动互联网、信息化企业、电信运营商都是海量数据的制造者,Facebook公司手中掌握着8.5亿用户,淘宝注册用户超过3.7亿,腾讯的微信用户突破3亿,这些庞大用户群所提供的数据,正在等待时机释放出巨大商业能量。可以预测,在不久的将来,Facebook、腾讯、电信运营商等海量数据持有者或者自我延伸成为数据分析提供商,或者与IBM、ZTE等企业密切对接成为上下游合作企业,大数据产业链将在某个爆发时点到来之际,以令人惊讶的速度成长壮大。
警惕大数据的危害
大数据时代,传统的随机抽样被“所有数据的汇拢”所取代,人们的思维决断模式,已可直接根据“是什么”来下结论,由于这样的结论剔除了个人情绪、心理动机、抽样精确性等因素的干扰,因此将更精确、更有预见性。不过,由于大数据过于依靠数据的汇集,一旦数据本身有问题,就很可能出现“灾难性大数据”,即因为数据本身的问题,而导致错误的预测和决策。
大数据的理论是“在稻草堆里找一根针”,而如果“所有稻草看上去都挺像那根针”呢?过多但无法辨析真伪和价值的信息和过少的信息一样,对于需要作出瞬间判断、一旦判断出错就很可能造成严重后果的情况而言,同样是一种危害。“大数据”理论是建立在“海量数据都是事实”的基础上,而如果数据提供者造假呢?这在大数据时代变得更有害,因为人们无法控制数据提供者和搜集者本人的偏见。拥有最完善数据库、最先接受“大数据”理念的华尔街投行和欧美大评级机构,却每每在重大问题上判断出错,这本身就揭示了“大数据”的局限性。
不仅如此,大数据时代造就了一个数据库无所不在的世界,数据监管部门面临前所未有的压力和责任:如何避免数据泄露对国家利益、公众利益、个人隐私造成伤害?如何避免信息不对等,对困难群体的利益构成伤害?在有效控制风险之前,也许还是让“大数据”继续待在笼子里更好一些。
大数据的经济价值已经被人们认可,大数据的技术也已经逐渐成熟,一旦完成数据的整合和监管,大数据爆发的时代即将到来。我们现在要做的,就是选好自己的方向,为迎接大数据的到来,提前做好准备。
❹ 大数据分析中有哪些有意思的东西
给你介绍几个大数据的有趣应用案例,你就知道大数据的有意思的地方了
1.啤酒与尿布(这个非常古老和经典的了)
2. 数据新闻让英国撤军
3.意料之外:胸部最大的是新疆妹子
4.腾讯圈子把前女友推荐给未婚妻
5.“魔镜”预知石油市场走向
6.Google成功预测冬季流感
7.大数据与乔布斯癌症治疗
8.奥巴马大选连任成功
9.微软大数据成功预测奥斯卡21项大奖
10超市预知高中生顾客怀孕
大数据挖掘的乐趣有很多很多的,远远不止上述,实际上,大数据在越来越多的领域创造着一个又一个的经典案例
❺ 美国政府发布大数据专项研究计划是哪一年
2012年 3月29日,奥巴马政府公布了“大数据研发计划”
❻ 美国总统奥巴马宣布启动"大数据研究和发展计划是哪一年
2011年初,美国政府发布了《美国创新战略:确保美国经济增长与繁荣》报告。该报告不仅对奥巴版马上任以来美国政府采权取的所有创新举措进行了系统归纳,同时也对美国未来科技发展做出了战略规划和部署。这意味着美国已经将创新的重心转移到促进经济增长与繁荣,以创新“赢得未来”。
❼ 你所了解的大数据,是真正的大数据吗
什么是大数据
大数据是指无法在一定时间内用常规软件工具对其内容进行抓取、管理和处理的数据集合。大数据技术,是指从各种各样类型的数据中,快速获得有价值信息的能力。适用于大数据的技术,包括大规模并行处理(MPP)数据库,数据挖掘电网,分布式文件系统,分布式数据库,云计算平台,互联网,和可扩展的存储系统。
大数据时代存储所面对的问题
随着大数据应用的爆发性增长,它已经衍生出了自己独特的架构,而且也直接推动了存储、网络以及计算技术的发展。毕竟处理大数据这种特殊的需求是一个新的挑战。硬件的发展最终还是由软件需求推动的,就这个例子来说,我们很明显的看到大数据分析应用需求正在影响着数据存储基础设施的发展。
从另一方面看,这一变化对存储厂商和其他IT基础设施厂商未尝不是一个机会。随着结构化数据和非结构化数据量的持续增长,以及分析数据来源的多样化,此前存储系统的设计已经无法满足大数据应用的需要。存储厂商已经意识到这一点,他们开始修改基于块和文件的存储系统的架构设计以适应这些新的要求。在这里,我们会讨论哪些与大数据存储基础设施相关的属性,看看它们如何迎接大数据的挑战。
容量问题
这里所说的“大容量”通常可达到PB级的数据规模,因此,海量数据存储系统也一定要有相应等级的扩展能力。与此同时,存储系统的扩展一定要简便,可以通过增加模块或磁盘柜来增加容量,甚至不需要停机。基于这样的需求,客户现在越来越青睐Scale-out架构的存储。Scale-out集群结构的特点是每个节点除了具有一定的存储容量之外,内部还具备数据处理能力以及互联设备,与传统存储系统的烟囱式架构完全不同,Scale-out架构可以实现无缝平滑的扩展,避免存储孤岛。
“大数据”应用除了数据规模巨大之外,还意味着拥有庞大的文件数量。因此如何管理文件系统层累积的元数据是一个难题,处理不当的话会影响到系统的扩展能力和性能,而传统的NAS系统就存在这一瓶颈。所幸的是,基于对象的存储架构就不存在这个问题,它可以在一个系统中管理十亿级别的文件数量,而且还不会像传统存储一样遭遇元数据管理的困扰。基于对象的存储系统还具有广域扩展能力,可以在多个不同的地点部署并组成一个跨区域的大型存储基础架构。
延迟问题
“大数据”应用还存在实时性的问题。特别是涉及到与网上交易或者金融类相关的应用。举个例子来说,网络成衣销售行业的在线广告推广服务需要实时的对客户的浏览记录进行分析,并准确的进行广告投放。这就要求存储系统在必须能够支持上述特性同时保持较高的响应速度,因为响应延迟的结果是系统会推送“过期”的广告内容给客户。这种场景下,Scale-out架构的存储系统就可以发挥出优势,因为它的每一个节点都具有处理和互联组件,在增加容量的同时处理能力也可以同步增长。而基于对象的存储系统则能够支持并发的数据流,从而进一步提高数据吞吐量。
有很多“大数据”应用环境需要较高的IOPS性能(IOPS (Input/Output Operations Per Second),即每秒进行读写(I/O)操作的次数,多用于数据库等场合,衡量随机访问的性能),比如HPC高性能计算。此外,服务器虚拟化的普及也导致了对高IOPS的需求,正如它改变了传统IT环境一样。为了迎接这些挑战,各种模式的固态存储设备应运而生,小到简单的在服务器内部做高速缓存,大到全固态介质的可扩展存储系统等等都在蓬勃发展。
并发访问一旦企业认识到大数据分析应用的潜在价值,他们就会将更多的数据集纳入系统进行比较,同时让更多的人分享并使用这些数据。为了创造更多的商业价值,企业往往会综合分析那些来自不同平台下的多种数据对象。包括全局文件系统在内的存储基础设施就能够帮助用户解决数据访问的问题,全局文件系统允许多个主机上的多个用户并发访问文件数据,而这些数据则可能存储在多个地点的多种不同类型的存储设备上。
安全问题
某些特殊行业的应用,比如金融数据、医疗信息以及政府情报等都有自己的安全标准和保密性需求。虽然对于IT管理者来说这些并没有什么不同,而且都是必须遵从的,但是,大数据分析往往需要多类数据相互参考,而在过去并不会有这种数据混合访问的情况,因此大数据应用也催生出一些新的、需要考虑的安全性问题。
成本问题
“大”,也可能意味着代价不菲。而对于那些正在使用大数据环境的企业来说,成本控制是关键的问题。想控制成本,就意味着我们要让每一台设备都实现更高的“效率”,同时还要减少那些昂贵的部件。目前,像重复数据删除等技术已经进入到主存储市场,而且现在还可以处理更多的数据类型,这都可以为大数据存储应用带来更多的价值,提升存储效率。在数据量不断增长的环境中,通过减少后端存储的消耗,哪怕只是降低几个百分点,都能够获得明显的投资回报。此外,自动精简配置、快照和克隆技术的使用也可以提升存储的效率。
很多大数据存储系统都包括归档组件,尤其对那些需要分析历史数据或需要长期保存数据的机构来说,归档设备必不可少。从单位容量存储成本的角度看,磁带仍然是最经济的存储介质,事实上,在许多企业中,使用支持TB级大容量磁带的归档系统仍然是事实上的标准和惯例。
对成本控制影响最大的因素是那些商业化的硬件设备。因此,很多初次进入这一领域的用户以及那些应用规模最大的用户都会定制他们自己的“硬件平台”而不是用现成的商业产品,这一举措可以用来平衡他们在业务扩展过程中的成本控制战略。为了适应这一需求,现在越来越多的存储产品都提供纯软件的形式,可以直接安装在用户已有的、通用的或者现成的硬件设备上。此外,很多存储软件公司还在销售以软件产品为核心的软硬一体化装置,或者与硬件厂商结盟,推出合作型产品。
数据的积累
许多大数据应用都会涉及到法规遵从问题,这些法规通常要求数据要保存几年或者几十年。比如医疗信息通常是为了保证患者的生命安全,而财务信息通常要保存7年。而有些使用大数据存储的用户却希望数据能够保存更长的时间,因为任何数据都是历史记录的一部分,而且数据的分析大都是基于时间段进行的。要实现长期的数据保存,就要求存储厂商开发出能够持续进行数据一致性检测的功能以及其他保证长期高可用的特性。同时还要实现数据直接在原位更新的功能需求。
灵活性
大数据存储系统的基础设施规模通常都很大,因此必须经过仔细设计,才能保证存储系统的灵活性,使其能够随着应用分析软件一起扩容及扩展。在大数据存储环境中,已经没有必要再做数据迁移了,因为数据会同时保存在多个部署站点。一个大型的数据存储基础设施一旦开始投入使用,就很难再调整了,因此它必须能够适应各种不同的应用类型和数据场景。
应用感知
最早一批使用大数据的用户已经开发出了一些针对应用的定制的基础设施,比如针对政府项目开发的系统,还有大型互联网服务商创造的专用服务器等。在主流存储系统领域,应用感知技术的使用越来越普遍,它也是改善系统效率和性能的重要手段,所以,应用感知技术也应该用在大数据存储环境里。
小用户怎么办?
依赖大数据的不仅仅是那些特殊的大型用户群体,作为一种商业需求,小型企业未来也一定会应用到大数据。我们看到,有些存储厂商已经在开发一些小型的“大数据”存储系统,主要吸引那些对成本比较敏感的用户。
❽ 美国《大数据研究和发展计划》是哪一年发布的
2011年初,美国政府发布了《美国创新战略:确保美国经济增长与繁荣》报告。该报告不仅对奥巴马上任以来美国政府采取的所有创新举措进行了系统归纳,同时也对美国未来科技发展做出了战略规划和部署。这意味着美国已经将创新的重心转移到促进经济增长与繁荣,以创新“赢得未来”。
❾ 大数据是什么如何挖掘
数据挖掘(英语:Data mining),又译为资料探勘、数据采矿。它是数据库知识发现(英语:Knowledge-Discovery in Databases,简称:KDD)中的一个步骤。数据挖掘一般是指从大量的数据中通过算法搜索隐藏于其中信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。
用于分析大数据的工具主要有开源与商用两个生态圈。
开源大数据生态圈:
1、Hadoop HDFS、HadoopMapRece, HBase、Hive 渐次诞生,早期Hadoop生态圈逐步形成。
2、. Hypertable是另类。它存在于Hadoop生态圈之外,但也曾经有一些用户。
3、NoSQL,membase、MongoDb
商用大数据生态圈:
1、一体机数据库/数据仓库:IBM PureData(Netezza), OracleExadata, SAP Hana等等。
2、数据仓库:TeradataAsterData, EMC GreenPlum, HPVertica 等等。
3、数据集市:QlikView、 Tableau 、 以及国内的REU-BDS 大数据
❿ 有哪些国家将大数据上升为国家战略
1、美国
美国是第一个将大数据上升至国家战略并制定行动计划的国家。2010年,美国总统科学技术顾问在呈给总统奥巴马的报告中建议:“联邦政府都要制定一个应对‘大数据’的战略”,大数据对美国政策制定的效果也越来越明显。
2、英国
2010 年英国政府开放数据门户网站Data.gov.uk 正式上线以来,英国政府开放数据范围已涵盖福利待遇、法律、交通、教育学习、公民权利、工作求职、税收、移民签证等15 个领域,涉及人们日常生活的各方面,其中最重要的是将政府财政税收和公务员收入完全公开与透明化,以达到迎接社会挑战、打击腐败和加强民主、增强政府诚信的目的。
3、澳大利亚
2011年5月,澳大利亚政府公布了《国家数字经济战略》报告,旨在确保2020年前基本完成国家宽带网络的物理建设,使澳大利亚成为世界数字经济的领军者。
随着大数据发展战略得到全球各国的高度重视,联合国秘书长执行办公室于2009 年正式启动了“全球脉动”(Global Pulse)倡议项目,旨在推动数字数据和快速数据收集和分析方式的创新。
4、中国
2015年党的十八届五中全会公报提出要实施“国家大数据战略”,这是大数据第一次写入党的全会决议,标志着大数据战略正式上升为国家战略。五中全会,开启了大数据建设的新篇章。
(10)大数据奥巴马扩展阅读
就大数据战略上升为国家战略而言,五中全会的公报具有五个方面的重要意义,也对应着相应五个方面的建设努力方向。
1、大数据战略要坚持党的领导、政治引领。党代表人民利益,党性的本质是人民性,坚持党的领导就是要坚持在大数据建设中切实保障公共利益、人民利益。
2、大数据战略要政府表率推动。大数据战略上升为国家战略,首先是需要政府做出表率,在开放数据、开放政府建设方面做出表率和积极努力。
3、大数据战略要立法规范。在开放政府数据,搜集储存记录个体、企业、组织信息,交易、再利用大数据资源等方面,要通过国家立法的形式予以规范。
4、保障大数据产业发展的市场均衡与有效竞争秩序。在大数据产业发展中,政府是推动力量,然而企业由于直接从事商业活动,更有动机成为大数据产业发展的主体。然而,由于网络时代,强者愈强的马太效应更为明显,大数据产业很容易形成强者愈强的产业垄断。
5、大数据产业发展要保障公共安全。任何产业的发展不能只顾经济利益而忽视公共安全。