围棋冠军人工智能
㈠ 第一个战胜围棋世界冠军的人工智能叫
第一抄个战胜围棋世界冠军的人工智能叫AlphaGo,AlphaGo由谷歌(Google)旗下DeepMind公司戴密斯·哈萨比斯领衔的团队开发。其主要工作原理是“深度学习”。
2017年5月,在中国乌镇围棋峰会上,它与排名世界第一的世界围棋冠军柯洁对战,以3比0的总比分获胜。围棋界公认阿尔法围棋的棋力已经超过人类职业围棋顶尖水平。
(1)围棋冠军人工智能扩展阅读:
计算机对应复杂度的方法就是“深度学习”,这是一种基于人工神经网络的人工智能方式。与“专家系统”为代表的,用大量“如果-就”规则定义的,自上而下的思路不同,人工神经网络标志着另外一种自下而上的思路。
它的基本特点是,试图模仿大脑的神经元之间传递,处理信息的模式。在简单的规则制定之后,计算机就可以模仿大脑学习,当然,不知疲倦,速度也更快,这也是AlphaGo可以快速学习、进化的原因。
㈡ 人工智能打败围棋冠军 服务机器人还有多远
机器人与人公平对弈1997年,人工智能机器人第一次打败顶尖的国际象棋人类选手。2006年,人类最后一次打败国际象棋人工智能机器人,此后便一再败北,正应了四十多年前计算机科学家的预言。但在围棋领域,由于人工智能机器人棋力比人类弱,在之前的比赛中,人类选手都会让子,而且人工智能机器人主要和业余段位的棋手比赛。因此,对于机器人的“进攻”,人们会以在围棋领域的智力优势来自我安慰。然而,这次情况不同了,与机器人对弈的选手樊麾目前是法国国家围棋队总教练,已经连续三年赢得欧洲围棋冠军的称号。而“阿尔法围棋”对战樊麾是完全公平的比赛,没有让子,却赢了比赛。此前,研究者也让“阿尔法围棋”和其他的围棋人工智能机器人进行了较量,在总计495局中只输了一局,胜率是99.8%。它甚至尝试了让4子对阵CrazyStone、Zen和Pachi三个先进的人工智能机器人,胜率分别是77%、86%和99%,由此可见“阿尔法围棋”有多强大。在2016年3月份,“阿尔法围棋”将和韩国九段棋手李世石在首尔一战,奖金是由谷歌提供的100万美金。李世石是最近10年中获得世界第一头衔最多的棋手。之前有人预测说,人工智能机器人需要再花十几年才能在围棋领域战胜人类,这场比赛或许会就此载入史册。
㈢ 围棋世界冠军落败人工智能,人类会被取代吗
速度快额外是。
㈣ google人工智能击败欧洲围棋冠军,alphago 究竟是怎么做到的
因为程序改进过,采用了深度学习的算法,选点,大局观的判断有了不小的进步。也修复了以前的bug,棋力有了突破性提高,
此外,Google给该软件投入了巨资,给与最好的硬件,极大的提高了他的计算能力。
从人工智能技术发展上看,DeepMind使用了“深度学习”技术,而非象俞斌估计的和职业高手合作。电脑通过海量学习人类高手的棋谱,用深度神经网络快速模拟出人的招法,下出来的棋就很象人了。樊麾二段说:“如果没人告诉我,我会想对手下得有一点怪,但肯定是个很强的棋手,一个真正的人”。
而DeepMind小组在搜索技术上取得了更大突破。跟Darkforest相似,AlphaGo用一个深度神经网络(policy network,“策略网络”)减少搜索的选点,象人类高手一样,只考虑少数几个可能的选点。此外,他们还建立了另一个深度神经网络(value network,“值网络”),象人类高手一样,思考到某个局面就有了结论,不必象之前的蒙特卡洛模拟那样下到终局,极大地减小了搜索的深度。
DeepMind引入的另一个逆天的高招是,让围棋人工智能自己和自己下,总结经验,自我不断提高!
这个人工智能自学习的要点是,不需要告诉电脑人类的经验,就让它自己玩这些电脑游戏,只是给出玩的分数。电脑看着分数不断纠正自己的策略,最后就发展出比人类还强的电游技术。这次的AlphaGo也用了这个技术,这又是比其它电脑围棋程序强的地方。
通过这样三招,DeepMind小组确实在围棋人工智能上取得了巨大突破。而且研究方法的潜力很大,从这个方向上走,最终象“更深的蓝”一样战胜人类最高手是完全可以想象的。一个月前,DeepMind小组就报告说围棋人工智能取得了巨大突破,会战胜人类,但当时棋迷与职业棋手并未留意。现在有了棋谱,又有了技术细节,就显得可信多了。
㈤ 为什么谷歌人工智能击败围棋冠军这事如此重要
谷歌人工智能击败围棋冠军是人工智能发展史上了不起的挑战。
棋类游戏一直被视为顶级人类智力的试金石。人工智能与人类棋手的对抗一直在上演。1989年开始,IBM的深蓝就常常能击败国际象棋大师了, 8年后的1997年,深蓝首次打败世界第一的国际象棋棋手加里-卡斯帕罗夫,开始统治国际象棋领域。2006 年,成为了人类在国际象棋的绝唱,因为自此之后,人类再没有战胜过最顶尖的人工智能国际象棋选手。
不同于国际象棋,围棋每回合的可能性更多,共有250种可能,一盘棋可以长达150回合。用人工智能战胜围棋专业选手,按照技术的发展速度,一般认为至少需要10年才能实现。
㈥ 第一个战胜围棋世界冠军的人工智能程序是什么
第一个战胜围棋世界冠军的人工智能程序是阿尔法狗。在韩国首尔举行的2016围棋人版机大战中,阿尔法权狗战胜了韩国名手李世石。
AlphaGo程序是美国谷歌公司旗下DeepMind团队开发的一款人机对弈的围棋程序,被中国棋迷们戏称为阿尔法狗。游戏是人工智能最初开发的主要阵地之一,比如博弈游戏就要求人工智能更聪明、更灵活,用更接近人类的思考方式解决问题。
(6)围棋冠军人工智能扩展阅读:
AlphaGo通过蒙特卡洛树搜索算法和两个深度神经网络合作来完成下棋。在与李世石对阵之前,谷歌首先用人类对弈的近3000万种走法来训练“阿尔法狗”的神经网络,让它学会预测人类专业棋手怎么落子。
然后更进一步,让AlphaGo自己跟自己下棋,从而又产生规模庞大的全新的棋谱。谷歌工程师曾宣称AlphaGo每天可以尝试百万量级的走法。
㈦ 为什么人工智能击败围棋冠军这事如此重要
二十年前,深蓝大战国际象棋大师卡斯帕罗夫的时候。同样是轰动世界,因为此类事件它代表的是计算机对人类在思考能力上的挑战。因为我们都知道计算机只是一台精密些的机器而已,它之所以能完成很多人类难以完成的工作,只是因为更快的计算速度而已。所以如果是一些简单的棋类的话,计算机完全可以试出所有可能的组合,从而打败人类。但是围棋不一样,围棋横纵各有19行共361个点,每个点上有三种状态,黑子,白子或无子,那么总共有多少种组合呢,3的361次方,换算一下就是10的271次方。数很大,你可能没有概念,那么我告诉你宇宙中原子的总个数是10的80次方。
正是围棋的组合太多,所以才有人说千年来没有下过一盘重样的棋。因此计算机是不可能用穷举法来和人类下棋的。这也是为什么20年前的计算机在国际象棋上早已战胜了人类。为什么过了20年才向人类在围棋上发起挑战。当年的深蓝是一台超级计算机,每秒钟可以计算2亿步,在当时是一个很惊人的运算速度。如果用同类型的算法进行的话,多出几十个数量级的运算任务估计要让对手等到宇宙末日才能下完了。
所以现在的谷歌阿尔法狗是用了一套自主学习的算法即人工智能来挑战人类。他的编程人员没有一个是职业棋手,都只是会下围棋而已,但是通过阿尔法狗的自主学习,由它自己跟自己下,每天数百万局的数据采集,让它的成长为世界顶尖棋手的水平。
他所代表的人工智能,对人类在思考能力上的地位形成了极大的冲击。算是人工智能的又一个标志性事件。人工智能时代越来越迫近了,人类又该怎样来面对人工智能呢,这都是一个值得思考的问题。
纯手打,具体疑问还可以追问
㈧ 10年或者20年后,世界围棋冠军和人工智能,谁更强
不用等10年20年了,现在人工智能已经完胜世界职业顶尖高手了,而且,还是碾压。
㈨ Google 人工智能首次完胜人类围棋冠军 为什么很厉害
Google DeepMind 团队在最新一期《Nature》上发表论文称,其名为 “阿尔法围棋”()的人工智能,在没有任何让子的情况下以 5:0 完胜欧洲冠军、职业围棋二段樊麾。
在计算机的发展史,在国际象棋比赛中,计算机战胜人类是重要历史事件,过去了这么多年,人工智能战胜围棋冠军又怎么说明谷歌AI很牛呢?
围棋,一直被认为是人类仍然在机器面前能保持优势的游戏之一。过去20多年来,科技家们一直在试着教会电脑下棋,在1997年,IBM的深蓝曾经打败了国际象棋的世界冠军Garry Kasparov,这成为了人工智能的一座里程碑事件。但是,围棋比国际象棋还是要复杂得多,国际象棋中,平均每回合有35种可能,一盘棋可以有80回合;相比之下,围棋每回合有250种可能,一盘棋可以长达150回合。
在下国际象棋的时候,计算机可以分析出每一个可能的步骤,从而进行最优选择,但是,围棋可能的步骤是国际象棋的10倍之多。这也正是围棋人工智能的难点所在。
在过去很长时间里,最好的计算机连厉害点的业余围棋棋手都下不过。所以,去年,Facebook就开始打造围棋人工智能,并且在过去6个月里让它可以用最快0.1秒的速度来落子。负责这项目的人,就坐在里扎克伯格20英尺远的地方。但是,Google还是快一步。
这场比赛实际上发生在去年十月,但是知道今天,它才在《自然》杂志中披露出来。
David Silver是这项研究的第一作者,在他看来,阿尔法Go的关键不在于简单粗暴的计算出可能步骤,而是近似于人类的“想象力”。这背后是名为一项名为“深度学习”的大杀器,它让计算机不再是简单地使用计算能力来统计所有数据,而是像人类一样,训练,然后学习。Silver说,计算机“下围棋需要的极复杂的直觉机制,这种机制以前我们认为只可能存在于人类大脑中。”
阿尔法Go用了多种“神经网络”并行,并且相互作用。其中,一个叫做“值网络”(value network),来衡量白字和黑子在棋盘上的位置,一个叫做“策略网络”(“policy network” ),会不断地学习此前人类和自己的落子,来选择接下来怎么下。
不仅仅比人类、比起其他机器人同类,阿尔法Go也更加强大。它和其他人工智能下了500场围棋,只输了1场,甚至在给对手让子的情况下,它也照赢不误。而Silver说,它比其他人工智能更先进的地方,就在于可以自我学习。而且,这种机制不仅仅可以用在围棋学习中,阿尔法Go还可以用来解决很多现实问题,比如处理气候模型等。
据消息称,Google的“阿尔法Go”V和现在的围棋世界冠军李世石 (Lee Sedol),将在今年三月正式进行比赛。在围棋这个古老的、几乎代表了人类智力巅峰的游戏上,机器人和人类究竟谁更强大,答案很快就会揭晓。