大数据跟人工智能比较
当前开设大来数据专业的高校源比较多,选择的空间也比较大,相对于人工智能专业来说,大数据技术体系也相对比较成熟,学习难度也相对要低一些,所以可以重点考虑一下大数据专业。从知识体系结构来看,大数据专业的学生未来也可以向人工智能方向发展。
㈡ 人工智能和大数据那个专业比较好呀
大数据
Big data,是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
人工智能
Artificial Intelligence,英文缩写为AI。它的领域范畴是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
大数据技术主要是围绕数据本身进行一系列的价值化操作,包括数据的采集、整理、存储、安全、分析、呈现和应用等。大数据技术与物联网、云计算都有密切的联系,物联网为大数据提供了主要的数据来源,而云计算则为大数据提供了支撑平台。
人工智能目前还处在初级阶段,主要的研究方向集中在自然语言处理、知识表示、自动推理、机器学习、计算机视觉和机器人学等六个方面。人工智能是典型的交叉学科,涉及到哲学、数学、计算机、经济学、神经学、语言学等诸多领域。
大数据与人工智能的关系
大数据和人工智能虽然关注点不相同,但关系密切,可以这样说,大数据是人工智能的基石,动力。大数据和AI中的深度学习是密不可分的,有了大量数据,作为深度学习的“学习资料”,计算机可以从中找到规律,海量数据,加上算法的突破和计算力的支撑让人工智能获得突破、走向应用。
一是人工智能需要大量的数据作为“思考”和“决策”的基础,二是大数据也需要人工智能技术进行数据价值化操作,比如机器学习就是数据分析的常用方式。在大数据价值的两个主要体现当中,数据应用的主要渠道之一就是智能体(人工智能产品)。
人工智能就是大数据应用的体现,是大数据、云计算的应用场景。没有大数据就没有人工智能,人工智能应用的数据越多,其获得的结果就越准确。
河南新华欢迎学习
㈢ 大数据和人工智能有什么区别
人工智能是代替人去干工作。
㈣ 人工智能专业好还是大数据好
地位上看,人工智能更好,大数据更像是给人工智能打工的
但是从要求上看,人工智能对技术思维能力要求高很多,大数据就更容易入行一些
所以还是要结合自身的特点
㈤ 大数据和人工智能哪个比较好
人工智能更多的是和制造业结合到一起,我认为还是这个行业有更好的未来,有更多的就业机会。
㈥ 大数据和人工智能哪个好
想了解大数据与人工智能孰优孰劣,首先我们得从认知和理解大数据和人工智能的概念开始。
1、大数据
大数据是物联网、Web系统和信息系统发展的综合结果,其中物联网的影响最大,所以大数据也可以说是物联网发展的必然结果。大数据相关的技术紧紧围绕数据展开,包括数据的采集、整理、传输、存储、安全、分析、呈现和应用等等。目前,大数据的价值主要体现在分析和应用上,比如大数据场景分析等。
2、人工智能
人工智能是典型的交叉学科,研究的内容集中在机器学习、自然语言处理、计算机视觉、机器人学、自动推理和知识表示等六大方向,目前机器学习的应用范围还是比较广泛的,比如自动驾驶、智慧医疗等领域都有广泛的应用。人工智能的核心在于“思考”和“决策”,如何进行合理的思考和合理的行动是目前人工智能研究的主流方向。
3、大数据与人工智能孰好孰坏
大数据和人工智能虽然关注点并不相同,但是却有密切的联系,一方面人工智能需要大量的数据作为“思考”和“决策”的基础,另一方面大数据也需要人工智能技术进行数据价值化操作,比如机器学习就是数据分析的常用方式。在大数据价值的两个主要体现当中,数据应用的主要渠道之一就是智能体(人工智能产品),为智能体提供的数据量越大,智能体运行的效果就会越好,因为智能体通常需要大量的数据进行“训练”和“验证”,从而保障运行的可靠性和稳定性。
目前大数据相关技术已经趋于成熟,相关的理论体系已经逐步完善,而人工智能尚处在行业发展的初期,理论体系依然有巨大的发展空间。从学习的角度来说,如果从大数据开始学习是个不错的选择,从大数据过渡到人工智能也会相对比较容易。总的来说,两个技术之间并不存在孰优孰劣的问题,发展空间都非常大。
㈦ 人工智能和大数据那个比较深奥
大数据和人工智能虽然关注点并不相同,但是却有密切的联系,一方面人专工智能需属要大量的数据作为“思考”和“决策”的基础,另一方面大数据也需要人工智能技术进行数据价值化操作,比如机器学习就是数据分析的常用方式。在大数据价值的两个主要体现当中,数据应用的主要渠道之一就是智能体(人工智能产品),为智能体提供的数据量越大,智能体运行的效果就会越好,因为智能体通常需要大量的数据进行“训练”和“验证”,从而保障运行的可靠性和稳定性
㈧ 人工智能和大数据有什么区别
人工智能
(计算机科学的一个分支)
锁定
大数据
(IT行业术语)
本词条由“科普中国”科学网络词条编写与应用工作项目审核
。
本词条由“科普中国”科学网络词条编写与应用工作项目审核
。
人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。
人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。[1]2017年12月,人工智能入选“2017年度中国媒体十大流行语”
大数据(big data)是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。[1]
在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》[2]中大数据指不用随机分析法(抽样调查)这样捷径,而采用所有数据进行分析处理。大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性)。[3]
㈨ AI(人工智能)和大数据有什么不同
大数据,就是大量的信息,这些信息在数据处理中心(高配的商业服务器)跑版,肯权定会把跑废,如果只是用简单的算法来处理,也很浪费时间。
人工智能是很多技术的总称,包括机器人、语言识别、图像识别、自然语言处理和专家系统等,因为人工智能尚在发展阶段,所以也没有非常精准的定义
㈩ 大数据专业和人工智能专业哪个好
首先,人工智能和大数据这两个专业的前景都比较广阔,随着产业结构升级的持续推进,未来大数据和人工智能专业的人才培养规模会逐渐扩大。
人工智能与大数据具有密切的联系,大数据是人工智能的重要基础,二者之间的发展会互相促进。在行业内,大数据工程师的工作内容会涉及到人工智能技术,而人工智能工程师在工作中也会使用到大数据技术,所以大数据和人工智能的技术边界是比较模糊的,当前也有不少大数据工程师开始转向人工智能领域的研发。
大数据专业的重点在于完成数据的价值化,而人工智能专业的重点在于完成智能决策,大数据为人工智能提出决策的基础,人工智能为大数据的价值化提供出口。如果把大数据比喻成“石油”的话,那么人工智能就可以比喻成“汽车”。
从技术的成熟度上来看,大数据技术目前已经趋于成熟,正处在落地应用的初期,所以当前选择大数据专业会有一个较为系统的学习过程,可以参考的案例也比较多。当然,由于目前大数据领域依然有很多课题需要攻克,所以当前大数据领域依然以研发型人才需求为主,从业者要想具有更强的岗位竞争力,建议读一下研究生。
人工智能相对于大数据技术来说,目前还远没有达到技术的成熟期,人工智能目前依然处在所谓的“弱人工智能”阶段,所以如果选择学习人工智能会面临一定的难度,不仅知识量比较大,学习的周期也会更长一些。实际上,目前不少人工智能领域的从业者,有大量的工作内容是基于大数据开展的,所以如果想从事人工智能领域的研发,也可以从大数据开始学起。