Ⅰ 什么是大数据,大数据的典型案例有哪些

随着大数据时代的到来,大数据早已被逐步的运用在我们生活中的方方面面,那么除了之前众所周知的大数据杀熟事件,对于大数据你还了解多少呢?科学运用案例你又知道多少?今天就跟随千锋小编一起来看看。
洛杉矶警察局和加利福尼亚大学合作利用大数据预测犯罪的发生。
google流感趋势(Google Flu Trends)利用搜索关键词预测禽流感的散布。
统计学家内特.西尔弗(Nate Silver)利用大数据预测2012美国选举结果。
麻省理工学院利用手机定位数据和交通数据建立城市规划。
梅西百货的实时定价机制,根据需求和库存的情况,该公司基于SAS的系统对多达7300万种货品进行实时调价。
……
种种的案例实在是太多,或许我们永远说不完一样,所以我们就来看一看大数据被科学运用的一个经典案例:

“啤酒与尿布”的故事产生于20世纪90年代的美国沃尔玛超市中,沃尔玛的超市管理人员分析销售数据时发现了一个令人难于理解的现象:在某些特定的情况下,“啤酒”与“尿布”两件看上去毫无关系的商品会经常出现在同一个购物篮中,这种独特的销售现象引起了管理人员的注意,经过后续调查发现,这种现象出现在年轻的父亲身上。
如果这个年轻的父亲在卖场只能买到两件商品之一,则他很有可能会放弃购物而到另一家商店,直到可以一次同时买到啤酒与尿布为止。沃尔玛发现了这一独特的现象,开始在卖场尝试将啤酒与尿布摆放在相同的区域,让年轻的父亲可以同时找到这两件商品,并很快地完成购物;而沃尔玛超市也可以让这些客户一次购买两件商品、而不是一件,从而获得了很好的商品销售收入,这就是“啤酒与尿布” 故事的由来。
当然“啤酒与尿布”的故事必须具有技术方面的支持。1993年美国学者Agrawal提出通过分析购物篮中的商品集合,从而找出商品之间关联关系的关联算法,并根据商品之间的关系,找出客户的购买行为。艾格拉沃从数学及计算机算法角度提 出了商品关联关系的计算方法——Aprior算法。沃尔玛从上个世纪 90 年代尝试将 Aprior 算法引入到 POS机数据分析中,并获得了成功,于是产生了“啤酒与尿布”的故事。
其实大数据,其影响除了以上列举的方面外,它同时也能在经济、政治、文化等方面产生深远的影响,大数据可以帮助人们开启循“数”管理的模式,也是我们当下“大社会”的集中体现,三分技术,七分数据,得数据者得天下。

Ⅱ 物联网应用案例有哪些方面呢

三维物联网应用领域分布在多个方面,其中包括:

智慧城市

智慧城市以最大化优化城市功能为目标,促进经济增长,同时利用智能科技与数据分析来提高城市居民的生活质量。智慧城市基于物联网、云计算等新一代信息技术以及维基、社交网络、综合集成法等工具和方法的应用,营造了有利于创新涌现的生态。更为重要的是,智慧城市利用信息和通信技术让城市生活更加智能,通过高效利用资源,节约成本、能源,提升生活质量,减少对环境的负面影响,推动了低碳经济的发展。

智慧园区

随着建筑业的高速发展,施工事故也频繁发生,不仅夺去了无数建设者的生命,也为国家和企业造成了重大的经济损失。安全问题始终贯穿于工程建设始终,但是影响施工安全的因素错综复杂,管理的不规范和技术的不成熟都有可能导致施工的安全问题。物联网在施工管理中的应用,可以一定程度上避免安全事故的发生,保证施工安全。

Ⅲ 物联网中如何使用大数据

物联网中如何使用大数据
在瞬息万变的世界中,组织很难赶上不断涌现的新概念。但人们需要区分哪些技术和概念是有用的,哪些只是一种炒作。在数据分析领域,正是大数据引发了这个时代的质疑。而如今,当这个概念日益清晰时,一个新的应用浪潮即将到来:人们需要了解在物联网中如何使用大数据。

关于什么是大数据及其可带来的价值的热烈讨论已经开始消退。然而,当专家们开始大量使用大数据和物联网的技术组合时,人们又再一次试图定义物联网与大数据连接的方式。
物联网与大数据的接触点
简而言之,物联网是连接到互联网的设备网络。这些设备具有内置的传感器,可以生成数据并对外发送,从而可以相互通信,并与分析系统进行通信。
即使对物联网设备仍然很陌生,这个概念已经在人们的生活中找到了方向。设想一个智能家庭,它可以通过调节供暖和空调系统的运行模式来调节温度,可以开启和关闭照明系统,可以发出有关漏水或气体泄漏或外人入侵的信号。最重要的是,智能家居可以在没有户主参与的情况下做到这一点。
物联网业务的一个典型例子是机器监控,使用安装在不同机器部件上的多个传感器。这些传感器将有关温度、振动、压力、润滑等读数发送给分析系统,分析系统对其进行处理并识别一些隐藏的模式和相关性。如果系统识别出读数与某种故障模式相匹配,则会向维护团队发送即时警报。
以下将回答物联网如何与大数据相交的棘手问题。当一些技术正在炒作时,物联网可能是其中之一。实际上,物联网数据是大数据的类型之一,这使得大数据技术堆栈在所有阶段处理物联网数据都是一个很好的(但不是唯一的)选项。对于数据摄取,企业可以使用Apache Kafka,因为该技术支持数据流。Apache Hadoop生态系统是数据存储和处理历史数据的理想选择,而Apache Spark则非常适合近实时数据处理。
大数据使用案例中的物联网数据规则
而人们开始了解制造商所提供的用例。同时,也可以在其他行业了解物联网数据,了解物联网大数据用例。
医疗保健:在医疗保健领域,配戴移动应用技术的可穿戴传感器设备可以实现远程健康监测。该方法的工作原理如下:传感器监测特定患者的状态(心跳、体温、血压、呼吸率等),并将这些数据实时传送到云端,然后传送到应用程序。分析系统不断搜索所有患者物联网数据中的隐藏趋势,并试图找出可能引发并发症的模式。如果物联网的大数据分析显示某些令人担忧的症状,系统会立即向患者和医生发送警报。
零售:知名零售商亚马逊公司最近推出了一个新概念 - Amazon Go。这是一家没有收银员的商店,顾客不必排队等待购物。要进入商店只用扫描他们的智能手机即可。事实上,在这里采用的是物联网和大数据分析技术:商店里遍布传感器和摄像头,顾客在商店中购物,摄像头能够区分其中的每一个人,并且跟踪他们放入购物车或返回货架的所有产品。重量传感器提供了一个额外的控制点:他们可以认识到特定的产品已经不在货架。当顾客完成购物时,他们选择的所有产品都显示在真实和虚拟的篮子中,顾客可以离开商店,系统将在稍后收费。
毫无疑问,Amazon Go是一个有远见的概念。然而,零售业表现出更多脚踏实地的想法,例如智能物流技术,可以跟踪和优化路线,并识别每位卡车司机的行为模式。零售商还使用信标激活访问者的应用程序,并在访问者进入商店并通过信标时,推出相关产品优惠和促销活动。访客会因此感到满意,因为他们收到参加促销活动提供的个性化优惠。同时,信标对商店员工也有帮助,因为它们可以识别需要高质量服务的具有价值的客户。
银行业:银行业也从物联网中受益。银行正在努力获取客户全方位的视角,并提供无缝的客户体验。虽然这一切始于智能手机的积极参与,但物联网进一步扩展至可穿戴设备。例如,美国银行与FitPay公司合作进一步推动可穿戴支付技术。通过这种合作,持卡人将能够直接从他们的智能手表和其他可穿戴设备付款。银行将能够识别客户的行为和偏好。
语结
尽管围绕物联网进行了更多的炒作,但它只是大数据源其中之一。毫无疑问,这是一个有价值的领域,而且正在不断发展。如果企业已经实施了一些大数据解决方案,也许已经处理物联网数据,如果企业正计划采用大数据方案,希望以上描述的用例可以激发一些伟大的想法。

Ⅳ 物联网解决方案中的大数据处

作者 | 网络大数据

来源 | raincent_com

随着物联网的演变和发展,所有可以想象到的东西(或事物)和产业都将变得更加智能:智能家居和智慧城市、智能制造机械、智能汽车、智能健康等等。无数被授权收集和交换数据的东西正在形成一个全新的网络——物联网——一个可以在云中收集数据、传输数据和完成用户任务的物理对象网络。

物联网和大数据正在走向胜利之路。不过,要想从这一创新中获益,还需要解决一些挑战和问题。在本文中,我们很高兴与大家分享多年来在物联网咨询领域积累的知识。

物联网大数据如何应用

首先,有多种方法可以从物联网大数据中获益:在某些情况下,通过快速分析就足够了,而一些有价值的见解只有在经过深入的数据处理之后才能获得。

实时监测。通过连网设备收集的数据可以用于实时操作:测量家中或办公室的温度、跟踪身体活动(计算步数、监测运动)等;实时监测在医疗保健中被广泛应用(例如,获取心率、测量血压、糖分等);它还成功地应用于制造业(用于控制生产设备)、农业(用于监测牛和作物)和其他行业。

数据分析。在处理物联网生成的大数据时,我们有机会超越监测,并从这些数据中获得有价值的见解:识别趋势,揭示看不见的模式并找到隐藏的信息和相关性。

流程控制和优化。来自传感器的数据提供了额外的上下文情境信息,以揭示影响性能和优化流程的重要问题。

▲交通管理:跟踪不同日期和时间的交通负荷,以制定出针对交通优化的建议,例如,在特定时间段增加公共汽车的数量,看看是否有改观,以及建议引入新的交通信号灯方案和修建新的道路,以减少街道的交通拥堵状况。

▲零售:跟踪超市货架中商品的销售情况,并在商品快卖完之前及时通知工作人员补货。

▲农业:根据传感器的数据,在必要时给作物浇水。

预测性维护。通过连网设备收集的数据可以成为预测风险、主动识别潜在危险状况的可靠来源,例如:

▲医疗保健:监测患者健康状态并识别风险(例如,哪些患者有糖尿病、心脏病发作的风险),以便及时采取措施。

▲制造业:预测设备故障,以便在故障发生之前及时解决。

还应注意的是,并非所有的物联网解决方案都需要大数据(例如,如果智能家居拥有者要借助智能手机来关灯,则可以在没有大数据的情况下执行此操作)。重要的是要考虑减少处理动态数据的工作量,并避免存储将来没有用处的大量数据。

物联网中的大数据挑战

除非处理大量数据以获取有价值的见解,否则这些数据完全没用。此外,在数据收集、处理和存储方面还有各种挑战。

▲数据可靠性。虽然大数据永远不会100%准确,但在分析数据之前,请务必确保传感器工作正常,并且用于分析的数据质量可靠,且不会因各种因素(例如,机器运行的不利环境、传感器故障)而损坏。

▲要存储哪些数据。连网设备会产生万亿字节的数据,选择存储哪些数据和删除哪些数据是一项艰巨的任务。更重要的是,一些数据的价值还远远没有显现出来,但将来您可能需要这些数据。如果您决定为将来存储数据,那么面临的挑战就是以最小的成本做到这一点。

▲分析深度。一旦并非所有大数据都很重要,就会出现另一个挑战:什么时候快速分析就足够了,什么时候需要进行更深入的分析以带来更多价值。

▲安全。毫无疑问,各个领域的连网事物可以让我们的生活变得更加美好,但与此同时,数据安全也成一个非常重要的问题。网络罪犯可以侵入数据中心和设备,连接到交通系统、发电厂、工厂,并从电信运营商那里窃取个人数据。物联网大数据对于安全专家来说还是一个相对较新的现象,相关经验的缺失会增加安全风险。

物联网解决方案中的大数据处理

在物联网系统中,物联网体系架构的数据处理组件因输入数据的特性、预期结果等而不同。我们已经制定了一些方法来处理物联网解决方案中的大数据。

数据来自与事物相连的传感器。“事物”可以是任何物体:烤箱、汽车、飞机、建筑、工业机器、康复设备等。数据可以是周期性的,也可以是流式的。后者对于实时数据处理和迅速管理事物至关重要。

事物将数据发送到网关,以进行初始数据过滤和预处理,从而减少了传输到下一个物联网系统中的数据量。

边缘分析。在进行深入数据分析之前,有必要进行数据过滤和预处理,以选择某些任务所需的最相关数据。此外,此阶段还可以确保实时分析,以快速识别之前在云中通过深度分析所发现的有用模式。

对于基本协议转换和不同数据协议之间的通信,云网关是必需的。它还支持现场网关和中央物联网服务器之间的数据压缩和安全数据传输。

连网设备生成的数据以其自然格式存储在数据湖中。原始数据通过“流”进入数据湖。数据保存在数据湖中,直到可以用于业务目的。清理过的结构化数据存储在数据仓库中。

机器学习模块根据之前积累的历史数据生成模型。这些模型定期(例如,一个月一次)用新数据流更新。输入的数据被累积并应用于训练和创建新模型。当这些模型经过专家的测试和批准后,控制应用程序就可以使用它们,以响应新的传感器数据发送命令或警报。

总结

物联网产生大量数据,可用于实时监控、分析、流程优化和预测性维护等。然而,应该记住,从各种格式的海量数据中获得有价值的见解并不是一件容易事情:您需要确保传感器工作正常,数据得到安全传输和有效处理。此外,始终存在一个问题:哪些数据值得存储和处理。

尽管存在一些挑战和问题,但应记住,物联网的发展势头强劲,并可以帮助多个行业的企业开辟新的数字机遇。

Ⅳ 什么是物联网中的大数据举例说明大数据的应用。

在医院,儿科部会记录早产儿和患病婴儿的每一次心跳,然后将这些数据与历史数据相结合来识别模式。基于这些分析,系统可以在婴儿表现出任何明显的症状之前就检测到感染,这使得医生可以早期干预和治疗。
来自Nike & Fitbit的健身腕带可以收集有关我们走路或者慢跑的数据,例如我们走了多少步,每天燃烧了多少卡路里,我们的睡眠模式或者其他数据,然后结合这些数据与健康记录来改善我们的健康状况。
在学校和大学,流媒体视频课程和数据分析可以帮助教师跟踪学生的学习情况,根据他们的能力水平定制教学内容,以及预测学生的执行情况。
SmartThings公司可以帮助你在家里安装动力、湿度和其他传感器,让你了解家里正在发生的事情,同时通过iPhone上的应用程序来控制家里的所有设备。
当我们每天在公路上开车时,我们的智能手机会发送我们的位置信息以及速度,然后结合实时交通信息为我们提供最佳路线,从而避免堵车。结合位置应用程序AroundMe,还可以为你提供附近的餐馆、银行、加油站等信息。
当我们去购物时,我们的数据会结合历史购买记录和社交媒体数据来为我们提供优惠券、折扣和个性化优惠。
最后,EarlySense等公司正在开发健康和水平监测传感器,位于床垫下面,自动监测和记录心脏速率、呼吸速率、运动和睡眠活动。该传感器收集的数据以无线方式被发送到智能手机和平板电脑,进行进一步分析。

Ⅵ 什么是物联网中的大数据

(2)物联网中的数据速率更高:

一方面,物联网中数据海量性必然要求骨干网汇聚更多的数据,数据的传输速率要求更高;

另一方面,由于物联网与真实物理世界直接关联,很多情况下需要实时访问、控制相应的节点和设备,因此需要高数据传输速率来支持相应的实时性。

(3)物联网中的数据更加多样化:物联网涉及的应用范围广泛,从智慧城市、智慧交通、智慧物流、商品溯源,到智能家居、智慧医疗、安防监控等,无 一不是物联网应用范畴;

在不同领域、不同行业,需要面对不同类型、不同格式的应用数据,因此物联网中数据多样性更为突出。

(4)物联网对数据真实性的要求更高:物联网是真实物理世界与虚拟信息世界的结合,其对数据的处理以及基于此进行的决策将直接影响物理世界,物联网中数据的真实性显得尤为重要。

Ⅶ 浅谈物联网与大数据,了解物联网与大数据的关系

有人已经预言未来的时代僵尸一个“大数据”的时代,关注大数据的人越来越多,同时物联网的出现与发展推动了数据采集的能力,为数据库的建立提供了有力的支撑。而大数据的处理结果可以通过物联网这一平台有效地执行。数据的采集处理应用必将成为时代的发展主题。

物联网概念的提出
1998年,MIT的Kevin Ashton第一次提出:把RFID技术与传感器技术应用于日常物品中形成一个“物联网”
2005年,ITU报告:物联网是通过RFID和智能计算等技术实现全世界设备互联互联的网络。
2008年,IBM提出:把传感器设备安装到各种物体中,并且普遍链接形成网络,即“物联网”,进而再次基础上形成“智慧地球”。

物联网形式早已存在,统一意义上的物联网概念提出是在架构在互联网发展成熟的基础上。
物联网是互联网的应用拓展,与其说物联网是网络,不如说物联网是业务和应用。因此,应用创新是物联网发展的核心,以用户体验为核心是物联网发展的灵魂。
大数据,指的是所涉及的资料量规模据达到无法透过目前主流软件工具,在河里时间内达到管理、处理并且整理成为帮助企业经营决策更有积极目的的资讯。

大数据的误区
1、“大数据”不等于“海量数据”;
2、“大数据”不是一门“新兴技术”;
3、“大数据”不仅仅是“一种理念”。
智慧化的新经济形态
外在:物联网
人和机器的智慧融合
信息和物理世界的智慧融合
信息化与三大产业的智慧融合
内涵:大数据
每个人都是数据产生者、拥有者和消费者;
数据成为新“工业”革命的原材料;
数据中提出信息和智慧
新范式的确立表现为智慧产品的普遍化。
以上由物联传媒转载,如有侵权联系删除

Ⅷ 如何对物联网数据进行大数据分析

分析大数据


物联网传感器持续接收来自大量连接的异构设备的数据。随着联网设备数量的增加,物联网系统需要具有可伸缩性,以适应数据的流入。分析系统处理这些数据并提供有价值的报告,这将使企业具有竞争优势。由于数据是基于其类型挖掘的,因此必须对数据进行分岔以充分利用数据。根据问题数据的类型,可以进行不同类型的分析。比较常见的有:


流分析(Streaming Analytics)


流分析结合了来自传感器的未排序的流数据和来自研究的存储数据,以发现熟悉的模式。这种方法的实时分析可以在车队跟踪和银行交易等用例中提供帮助。


地理空间分析(Geospatial Analytics)


另一类大数据分析方法是地理空间,其中IoT传感器数据和传感器的物理位置的组合可以为预测分析提供整体视角。物联网世界中的对象数量众多,其通过无线网络发送数据的能力有助于获得详细的数据转储,这些数据转储可用于促进洞察。


挑战


对于目前所处的阶段,获取、分析和报告物联网数据是大多数企业的必修课。然而,由于这些技术仍处于发展阶段,这些组织面临着相当多的挑战。其中一些是:


集成


由于物联网数据通过多个渠道以不同的格式接收,因此收集和集成物联网数据具有挑战性。分析系统需要确保接收到的数据是一种可操作的格式,足以确定见解。文本挖掘和机器学习技术通常用于从传感器中提取文本数据。然而,提取非文本格式的数据,如图像、视频不能快速完成。


关于如何对物联网数据进行大数据分析,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。