人工智能四个
1. 人工智能有哪几个主要学派
目前人工智能的主要学派有下面三家:
(1)符号主义(symbolicism),又称为逻辑主义(logicism)、心理学派(psychologism)或计算机学派(computerism),其原理主要为物理符号系统(即符号操作系统)假设和有限合理性原理。
(2)连接主义(connectionism),又称为仿生学派(bionicsism)或生理学派(physiologism),其主要原理为神经网络及神经网络间的连接机制与学习算法。
(3)行为主义(actionism),又称为进化主义(evolutionism)或控制论学派(cyberneticsism),其原理为控制论及感知-动作型控制系统。
他们对人工智能发展历史具有不同的看法。
1、符号主义认为人工智能源于数理逻辑。数理逻辑从19世纪末起得以迅速发展,到20世纪30年代开始用于描述智能行为。计算机出现后,又再计算机上实现了逻辑演绎系统。其有代表性的成果为启发式程序LT逻辑理论家,证明了38条数学定理,表了可以应用计算机研究人的思维多成,模拟人类智能活动。正是这些符号主义者,早在1956年首先采用“人工智能”这个术语。后来又发展了启发式算法->专家系统->知识工程理论与技术,并在20世纪80年代取得很大发展。符号主义曾长期一枝独秀,为人工智能的发展作出重要贡献,尤其是专家系统的成功开发与应用,为人工智能走向工程应用和实现理论联系实际具有特别重要的意义。在人工智能的其他学派出现之后,符号主义仍然是人工智能的主流派别。这个学派的代表任务有纽厄尔(Newell)、西蒙(Simon)和尼尔逊(Nilsson)等。
2、连接主义认为人工智能源于仿生学,特别是对人脑模型的研究。它的代表性成果是1943年由生理学家麦卡洛克(McCulloch)和数理逻辑学家皮茨(Pitts)创立的脑模型,即MP模型,开创了用电子装置模仿人脑结构和功能的新途径。它从神经元开始进而研究神经网络模型和脑模型,开辟了人工智能的又一发展道路。20世纪60~70年代,连接主义,尤其是对以感知机(perceptron)为代表的脑模型的研究出现过热潮,由于受到当时的理论模型、生物原型和技术条件的限制,脑模型研究在20世纪70年代后期至80年代初期落入低潮。直到Hopfield教授在1982年和1984年发表两篇重要论文,提出用硬件模拟神经网络以后,连接主义才又重新抬头。1986年,鲁梅尔哈特(Rumelhart)等人提出多层网络中的反向传播算法(BP)算法。此后,连接主义势头大振,从模型到算法,从理论分析到工程实现,伟神经网络计算机走向市场打下基础。现在,对人工神经网络(ANN)的研究热情仍然较高,但研究成果没有像预想的那样好。
3、行为主义认为人工智能源于控制论。控制论思想早在20世纪40~50年代就成为时代思潮的重要部分,影响了早期的人工智能工作者。维纳(Wiener)和麦克洛克(McCulloch)等人提出的控制论和自组织系统以及钱学森等人提出的工程控制论和生物控制论,影响了许多领域。控制论把神经系统的工作原理与信息理论、控制理论、逻辑以及计算机联系起来。早期的研究工作重点是模拟人在控制过程中的智能行为和作用,如对自寻优、自适应、自镇定、自组织和自学习等控制论系统的研究,并进行“控制论动物”的研制。到20世纪60~70年代,上述这些控制论系统的研究取得一定进展,播下智能控制和智能机器人的种子,并在20世纪80年代诞生了智能控制和智能机器人系统。行为主义是20世纪末才以人工智能新学派的面孔出现的,引起许多人的兴趣。这一学派的代表作者首推布鲁克斯(Brooks)的六足行走机器人,它被看作是新一代的“控制论动物”,是一个基于感知-动作模式模拟昆虫行为的控制系统
2. 人工智能的关键词,4,5个左右
强人工智能基本上就这几个了 基于机器学习 机器学习 深度神经网络 基于神经网络
3. 人工智能分为几个阶段
历史上,人工智能的研究就像是坐过山车,忽上忽下。梦想的泡沫反复破灭,却也推动着人工智能技术的前进。
(1)AI梦的开始
1900年,世纪之交的数学家大会上面,希尔伯特宣布了数学界尚未解决的23个难题。
三十年代,图灵设想出了一个机器——图灵机,它是计算机的理论原型,圆满地刻画出了机械化运算过程的含义,并最终为计算机的发明铺平了道路。
1945年,凭借出众的才华,冯·诺依曼在火车上完成了早期的计算机EDVAC的设计,并提出了我们现在熟知的“冯·诺依曼体系结构”。
(2)AI梦的延续
1956年8月,在美国汉诺斯小镇宁静的达特茅斯学院中,约翰·麦卡锡(John McCarthy)、马文·闵斯基(Marvin Minsky,人工智能与认知学专家)、克劳德·香农(Claude Shannon,信息论的创始人)、艾伦·纽厄尔(Allen Newell,计算机科学家)、赫伯特·西蒙(Herbert Simon,诺贝尔经济学奖得主)等科学家正聚在一起,讨论着一个完全不食人间烟火的主题:用机器来模仿人类学习以及其他方面的智能。
会议足足开了两个月的时间,虽然大家没有达成普遍的共识,但是却为会议讨论的内容起了一个名字:人工智能。
(3)AI梦的快速发展
1976年,凯尼斯·阿佩尔(Kenneth Appel)和沃夫冈·哈肯(Wolfgang Haken)等人利用人工和计算机混合的方式证明了一个著名的数学猜想:四色猜想(现在称为四色定理)。
1956年,奥利弗·萨尔夫瑞德(Oliver Selfridge)研制出第一个字符识别程序,开辟了模式识别这一新的领域。
(4)近些年AI的突破
2011年,谷歌X实验室的研究人员从YouTube视频中抽取出1000万张静态图片,把它喂给“谷歌大脑”——一个采用了所谓深度学习技术的大型神经网络模型,在这些图片中寻找重复出现的模式。三天后,这台超级“大脑”在没有人类的帮助下,居然自己从这些图片中发现了“猫”。
2013年1月,网络公司成立了网络研究院,其中,深度学习研究所是该研究院旗下的第一个研究所。
这些全球顶尖的计算机、互联网公司都不约而同地对深度学习表现出了极大的兴趣。
4. 人工智能是什么
人工智能(计算机科学的一个分支)
人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。 人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,但没有一个统一的定义。
人工智能是对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。但是这种会自我思考的高级人工智能还需要科学理论和工程上的突破。
人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。
工智能的定义可以分为两部分,即“人工”和“智能”。“人工”比较好理解,争议性也不大。有时我们会要考虑什么是人力所能及制造的,或者人自身的智能程度有没有高到可以创造人工智能的地步,等等。但总的来说,“人工系统”就是通常意义下的人工系统。
关于什么是“智能”,就问题多多了。这涉及到其它诸如意识(CONSCIOUSNESS)、自我(SELF)、思维(MIND)(包括无意识的思维(UNCONSCIOUS_MIND)等等问题。人唯一了解的智能是人本身的智能,这是普遍认同的观点。但是我们对我们自身智能的理解都非常有限,对构成人的智能的必要元素也了解有限,所以就很难定义什么是“人工”制造的“智能”了。因此人工智能的研究往往涉及对人的智能本身的研究。其它关于动物或其它人造系统的智能也普遍被认为是人工智能相关的研究课题。
人工智能在计算机领域内,得到了愈加广泛的重视。并在机器人,经济政治决策,控制系统,仿真系统中得到应用。
5. 为什么唤醒人工智能需要四个字
人工智能需要唤醒“意识”,因为没有“意识”的人工智能还只是回“人工智障”,只是一答行行的执行代码,面向于人的机器还是冷冰冰的。我们现在有能力让人工智能“意识”唤醒的第一步就是和他们对话,所以语音和语言成为关键点。小智从这次发布会看,科大讯飞的机会最大,用语音诠释了人工智能“+”的内涵和外延!
6. 定义人工智能的四个方面是什么
人工智能(Artificial Intelligence) ,英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。 人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等