⑴ 神经网络的特点

不论何种类型的人工神经网络,它们共同的特点是,大规模并行处理,分布式专存储,弹性拓扑属,高度冗余和非线性运算。因而具有很髙的运算速度,很强的联想能力,很强的适应性,很强的容错能力和自组织能力。这些特点和能力构成了人工神经网络模拟智能活动的技术基础,并在广阔的领域获得了重要的应用。例如,在通信领域,人工神经网络可以用于数据压缩、图像处理、矢量编码、差错控制(纠错和检错编码)、自适应信号处理、自适应均衡、信号检测、模式识别、ATM流量控制、路由选择、通信网优化和智能网管理等等。
人工神经网络的研究已与模糊逻辑的研究相结合,并在此基础上与人工智能的研究相补充,成为新一代智能系统的主要方向。这是因为人工神经网络主要模拟人类右脑的智能行为而人工智能主要模拟人类左脑的智能机理,人工神经网络与人工智能有机结合就能更好地模拟人类的各种智能活动。新一代智能系统将能更有力地帮助人类扩展他的智力与思维的功能,成为人类认识和改造世界的聪明的工具。因此,它将继续成为当代科学研究重要的前沿。

⑵ 神经网络优缺点,

首先来看一下神经网络的缺点:

1. 黑盒子
神经网络最可能被人知晓的缺点是它们的“黑盒子”性质(也就是说你不知道神经网络是如何以及为什么会产生一定的输出)。例如,当你将一张猫的图像放入神经网络,预测结果显示它是一辆汽车时,这让人很难理解。而在某些领域,可解释性非常重要。
很多银行之所以不使用神经网络来预测一个人是否有信誉,是因为他们需要向客户解释为什么他们没有获得贷款。像Quora这样的网站也是如此。如果他们因为机器学习算法而决定删除用户账户,他们需要向用户解释为什么这样做。

如果将机器学习运用与重要的商业决策时,你能想象一个大公司的首席执行官会在不明白为什么应该完成的情况下做出数百万美元的决定吗?仅仅因为“计算机”说他需要这样做?

2. 发展的可持续时间
虽然有像Keras这样的库,让神经网络的开发变得相当简单,但有时您需要更多地控制算法的细节。您可能还会使用到Tensorflow,但是由于它相对复杂,开发需要的时间也更长。对于公司管理层来说,如果用简单的算法就可以更快地解决问题,则让他们花高昂的费用和较长的时间去开发一些东西,显然是不合适的。
3. 数据量

与传统的机器学习算法相比,神经网络通常需要更多的数据,至少需要数千数百万个标记样本。而如果使用其它算法,许多机器学习问题可以用较少的数据很好地解决。

虽然在某些情况下,神经网络需要处理少量数据(大多数情况下它们不需要)。而像朴素贝叶斯这样的简单算法也可以很好地处理少数数据。

4. 计算代价高昂
通常,神经网络比传统算法的计算代价更高。对于最先进的深度学习算法,完成深度神经网络从头到尾的完整训练,可能需要几周的时间。而大多数传统的机器学习算法则只需要少于几分钟到几个小时或几天的时间即可。

神经网络所需的计算能力很大程度上取决于数据的大小,同时也取决于网络的深度和复杂程度。

然后就是神经网络的优点:
ANN 有能力学习和构建非线性的复杂关系的模型,这非常重要,因为在现实生活中,许多输入和输出之间的关系是非线性的、复杂的。
ANN 可以推广,在从初始化输入及其关系学习之后,它也可以推断出从未知数据之间的未知关系,从而使得模型能够推广并且预测未知数据。

与许多其他预测技术不同,ANN 不会对输入变量施加任何限制(例如:如何分布)。此外,许多研究表明,ANN 可以更好地模拟异方差性,即具有高波动性和不稳定方差的数据,因为它具有学习数据中隐藏关系的能力,而不在数据中强加任何固定关系。这在数据波动非常大的金融时间序列预测中非常有用。
神经网络的发展主要为:启蒙时期(1890-1969),低潮时期(1969-1982),复兴时期(1982-1986),新时期(1986至今)

⑶ 神经网络和支持向量机的优缺点!

SVM有如下主要几个特点:
(1)非线性映射是SVM方法的理论基础,SVM利用内积核函数代替向高维空间的非线性映射;
(2)对特征空间划分的最优超平面是SVM的目标,最大化分类边际的思想是SVM方法的核心;
(3)支持向量是SVM的训练结果,在SVM分类决策中起决定作用的是支持向量。
(4)SVM 是一种有坚实理论基础的新颖的小样本学习方法。它基本上不涉及概率测度及大数定律等,因此不同于现有的统计方法。从本质上看,它避开了从归纳到演绎的传统过程,实现了高效的从训练样本到预报样本的“转导推理”,大大简化了通常的分类和回归等问题。
(5)SVM 的最终决策函数只由少数的支持向量所确定,计算的复杂性取决于支持向量的数目,而不是样本空间的维数,这在某种意义上避免了“维数灾难”。
(6)少数支持向量决定了最终结果,这不但可以帮助我们抓住关键样本、“剔除”大量冗余样本,而且注定了该方法不但算法简单,而且具有较好的“鲁棒”性。这种“鲁棒”性主要体现在:
①增、删非支持向量样本对模型没有影响;
②支持向量样本集具有一定的鲁棒性;
③有些成功的应用中,SVM 方法对核的选取不敏感

两个不足:
(1) SVM算法对大规模训练样本难以实施
由于SVM是借助二次规划来求解支持向量,而求解二次规划将涉及m阶矩阵的计算(m为样本的个数),当m数目很大时该矩阵的存储和计算将耗费大量的机器内存和运算时间。针对以上问题的主要改进有有J.Platt的SMO算法、T.Joachims的SVM、C.J.C.Burges等的PCGC、张学工的CSVM以及O.L.Mangasarian等的SOR算法
(2) 用SVM解决多分类问题存在困难
经典的支持向量机算法只给出了二类分类的算法,而在数据挖掘的实际应用中,一般要解决多类的分类问题。可以通过多个二类支持向量机的组合来解决。主要有一对多组合模式、一对一组合模式和SVM决策树;再就是通过构造多个分类器的组合来解决。主要原理是克服SVM固有的缺点,结合其他算法的优势,解决多类问题的分类精度。如:与粗集理论结合,形成一种优势互补的多类问题的组合分类器。

⑷ 人工智能有哪几个主要学派

目前人工智能的主要学派有下面三家:
(1)符号主义(symbolicism),又称为逻辑主义(logicism)、心理学派(psychologism)或计算机学派(computerism),其原理主要为物理符号系统(即符号操作系统)假设和有限合理性原理。
(2)连接主义(connectionism),又称为仿生学派(bionicsism)或生理学派(physiologism),其主要原理为神经网络及神经网络间的连接机制与学习算法。
(3)行为主义(actionism),又称为进化主义(evolutionism)或控制论学派(cyberneticsism),其原理为控制论及感知-动作型控制系统。
他们对人工智能发展历史具有不同的看法。
1、符号主义认为人工智能源于数理逻辑。数理逻辑从19世纪末起得以迅速发展,到20世纪30年代开始用于描述智能行为。计算机出现后,又再计算机上实现了逻辑演绎系统。其有代表性的成果为启发式程序LT逻辑理论家,证明了38条数学定理,表了可以应用计算机研究人的思维多成,模拟人类智能活动。正是这些符号主义者,早在1956年首先采用“人工智能”这个术语。后来又发展了启发式算法->专家系统->知识工程理论与技术,并在20世纪80年代取得很大发展。符号主义曾长期一枝独秀,为人工智能的发展作出重要贡献,尤其是专家系统的成功开发与应用,为人工智能走向工程应用和实现理论联系实际具有特别重要的意义。在人工智能的其他学派出现之后,符号主义仍然是人工智能的主流派别。这个学派的代表任务有纽厄尔(Newell)、西蒙(Simon)和尼尔逊(Nilsson)等。
2、连接主义认为人工智能源于仿生学,特别是对人脑模型的研究。它的代表性成果是1943年由生理学家麦卡洛克(McCulloch)和数理逻辑学家皮茨(Pitts)创立的脑模型,即MP模型,开创了用电子装置模仿人脑结构和功能的新途径。它从神经元开始进而研究神经网络模型和脑模型,开辟了人工智能的又一发展道路。20世纪60~70年代,连接主义,尤其是对以感知机(perceptron)为代表的脑模型的研究出现过热潮,由于受到当时的理论模型、生物原型和技术条件的限制,脑模型研究在20世纪70年代后期至80年代初期落入低潮。直到Hopfield教授在1982年和1984年发表两篇重要论文,提出用硬件模拟神经网络以后,连接主义才又重新抬头。1986年,鲁梅尔哈特(Rumelhart)等人提出多层网络中的反向传播算法(BP)算法。此后,连接主义势头大振,从模型到算法,从理论分析到工程实现,伟神经网络计算机走向市场打下基础。现在,对人工神经网络(ANN)的研究热情仍然较高,但研究成果没有像预想的那样好。
3、行为主义认为人工智能源于控制论。控制论思想早在20世纪40~50年代就成为时代思潮的重要部分,影响了早期的人工智能工作者。维纳(Wiener)和麦克洛克(McCulloch)等人提出的控制论和自组织系统以及钱学森等人提出的工程控制论和生物控制论,影响了许多领域。控制论把神经系统的工作原理与信息理论、控制理论、逻辑以及计算机联系起来。早期的研究工作重点是模拟人在控制过程中的智能行为和作用,如对自寻优、自适应、自镇定、自组织和自学习等控制论系统的研究,并进行“控制论动物”的研制。到20世纪60~70年代,上述这些控制论系统的研究取得一定进展,播下智能控制和智能机器人的种子,并在20世纪80年代诞生了智能控制和智能机器人系统。行为主义是20世纪末才以人工智能新学派的面孔出现的,引起许多人的兴趣。这一学派的代表作者首推布鲁克斯(Brooks)的六足行走机器人,它被看作是新一代的“控制论动物”,是一个基于感知-动作模式模拟昆虫行为的控制系统

⑸ 人工智能和神经网络有什么联系与区别

联系:都是模仿人类行为的数学模型以及算法。神经网络的研究能促进或回者加快人工智能答的发展。

区别如下:

一、指代不同

1、人工智能:是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。

2、神经网络:是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。


二、方法不同

1、人工智能:企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。

2、神经网络:依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。

三、目的不同

1、人工智能:主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。

2、神经网络:具有初步的自适应与自组织能力。在学习或训练过程中改变突触权重值,以适应周围环境的要求。同一网络因学习方式及内容不同可具有不同的功能。

⑹ 人工智能的利与弊辩论

现在的人工智能的技术大概还处于初级阶段。主要还是以指令的形式进行控制而已。

没有自主意识的人工智能还不足畏惧,还没有什么不利于人类的灾害产生。弊端还不是太明显。好处应该还不少。

人工智能的利就是服务人类,让我们解放自己,各方面都有发展。工业生产现场,各种机器人的使用,解放了我们的劳动力,还能不知疲倦的不停的工作。弊端就是我们的饭碗没了,都被机器所代替。

服务行业的服务机器人,给我们提供了生活上的各种便利,各种指令形式各异。声控,手势,意念等很多方式。这种应用应该没有什么弊端的。

将来的人工智能的发展,是越来越高级,就像电影里的那些机器人。他们拥有自己的思维,会思考,控制方式不仅是我们发的指令了,有可能机器人自己给自己发指令了。

这样的高级的人工智能,有利的方面是他们可以自主思考问题,解决问题,力量大,不知疲倦的帮我们人类工作。

而不好的方面也就是弊端是,机器有了自己的思维,思考,会不会想到自己为什么要听你们人类的话,人类控制的权限被自动删除,造反怎么办。这个局面是我们人类不想看到的。但是我们还是在研究,很想让机器有自己的思维,会思考,这也是我们人类能发展到现在的原因吧。喜欢研究研究。动动脑子,使大脑更发达。也在朝着机器大脑的进化而努力。

⑺ 人工智能神经网络

1.
x=2.0,w=2.3,b=-3
y=wx+b=1.6
1)硬极限就是大于0就是1,小于等于0就取0,所以答案是1
2)线性函数输入回是多少,输答出就是多少,所以答案是1.6
3)对数-S型函数,应该是应用sigmoid函数,y=1/(1+e^(-1.6))=0.832

2.你打错字了?把“是”打成“时”了?
x=2.0,w=2.3,b=-3
y=wx+b=1.6
1)传输函数的净输入是1.6

2)神经元的输出是1.6(没有给传输函数是啥,所以这个可能是没有经过传输函数的输出吧。)

3.
1)6个输入,2个输出,所以有8个神经元。
2)6个w,所以是6维
3)采用sigmoid函数,输出就会是0和1之间的连续值了。
4)为了使网络具有更好的性能,可以提高容错性和存储容量,可以采用偏值

以上答案仅供参考。第一题应该没有问题,后两题不太确定。

⑻ 神经网络 人工智能

我本科是学自动化的,研究生读的是控制工程与控制理论,也就是本科自动化专业的对口研究生专业,课题研究的就是神经网络,对这个东西是又爱又恨!人工智能是我们主修的一门课程,神经网络只是人工智能的多种方法中的一种,人工智能是很博大精深的一个领域。但同样是学自动化专业,课题不同,你也可以选择不学人工只能。如果要学人工智能,那肯定是首选自动化了。不过本科是不开设这门课程的,最多是选修课大致讲一讲那种,要想伸入学只能读研究生了,要不就自学,如果你脑瓜非常灵光的话!呵呵课题研究的就是神经网络,对这个东西是又爱又恨!

⑼ 人工神经网络的特点有哪些

人工神经网络抄的特袭点和优越性,主要表现在三个方面:
第一,具有自学习功能。例如实现图像识别时,只在先把许多不同的图像样板和对应的应识别的结果输入人工神经网络,网络就会通过自学习功能,慢慢学会识别类似的图像。自学习功能对于预测有特别重要的意义。预期未来的人工神经网络计算机将为人类提供经济预测、市场预测、效益预测,其应用前途是很远大的。
第二,具有联想存储功能。用人工神经网络的反馈网络就可以实现这种联想。
第三,具有高速寻找优化解的能力。寻找一个复杂问题的优化解,往往需要很大的计算量,利用一个针对某问题而设计的反馈型人工神经网络,发挥计算机的高速运算能力,可能很快找到优化解。

人工神经网络突出的优点:
(1)可以充分逼近任意复杂的非线性关系;
(2)所有定量或定性的信息都等势分布贮存于网络内的各神经元,故有很强的鲁棒性和容错性;
(3)采用并行分布处理方法,使得快速进行大量运算成为可能;
(4)可学习和自适应不知道或不确定的系统;
(5)能够同时处理定量、定性知识。