大数据挖掘与社会网络分析
Ⅰ 大数据,数据分析和数据挖掘的区别
数据分析与数据挖掘的目的不一样,数据分析是有明确的分析群体,就是对群体进行各个维度的拆、分、组合,来找到问题的所在,而数据挖掘的目标群体是不确定的,需要我们更多是是从数据的内在联系上去分析,从而结合业务、用户、数据进行更多的洞察解读。
数据分析与数据挖掘的思考的方式不同,一般来讲,数据分析是根据客观的数据进行不断的验证和假设,而数据挖掘是没有假设的,但你也要根据模型的输出给出你评判的标准。
大数据感觉并不是数据量大,也不是数据复杂,这些都可以用工具和技术去处理,而是它可以做到千人千面,而且是实时判断规则。
例如定向广告的推送,就是大数据,它根据你以往的浏览行为,可以准确的给你推相关的信息,基本做到了你一个人就是一个数据库,而不是一条数据。但我们所作的数据分析更多是针对群体的,而非针对每个个人。
我们经常做分析的时候,数据分析需要的思维性更强一些,更多是运用结构化、MECE的思考方式,类似程序中的IF else
而数据挖掘大多数是大而全,多而精,数据越多模型越可能精确,变量越多,数据之间的关系越明确,什么变量都要,先从模型的意义上选变量(大而全,多而精),之后根据变量的相关系程度、替代关系、重要性等几个方面去筛选,最后全扔到模型里面,最后从模型的参数和解读的意义来判断这种方式合不合理。
所以大数据时代也显露出了各类问题,数据的隐私、数据杀熟、数据孤岛等,这也许就是我们目前看到大数据分析更看重的是技术、手段的原因。
Ⅱ 大数据、数据分析和数据挖掘的区别是什么
区别:大数据是互联网的海量数据挖掘,而数据挖掘更多是针对内部企业行业小众化的数据挖掘,数据分析就是进行做出针对性的分析和诊断,大数据需要分析的是趋势和发展,数据挖掘主要发现的是问题和诊断。
Ⅲ 大数据挖掘与大数据分析一样吗
数据分析,就是寻找这些被量化的现象之间的「关系」。这个关系就是y=f(x)。找到两个变量之间的关系,多找到一种关系,在实践中,就多一种有效手段。
Ⅳ 大数据 和 数据挖掘 的区别
大数据概念:大数据是近两年提出来的,有三个重要的特征:数据量大,结构复杂,数据更新速度很快。由于Web技术的发展,web用户产生的数据自动保存、传感器也在不断收集数据,以及移动互联网的发展,数据自动收集、存储的速度在加快,全世界的数据量在不断膨胀,数据的存储和计算超出了单个计算机(小型机和大型机)的能力,这给数据挖掘技术的实施提出了挑战(一般而言,数据挖掘的实施基于一台小型机或大型机,也可以进行并行计算)。
数据挖掘概念: 数据挖掘基于数据库理论,机器学习,人工智能,现代统计学的迅速发展的交叉学科,在很多领域中都有应用。涉及到很多的算法,源于机器学习的神经网络,决策树,也有基于统计学习理论的支持向量机,分类回归树,和关联分析的诸多算法。数据挖掘的定义是从海量数据中找到有意义的模式或知识。
大数据需要映射为小的单元进行计算,再对所有的结果进行整合,就是所谓的map-rece算法框架。在单个计算机上进行的计算仍然需要采用一些数据挖掘技术,区别是原先的一些数据挖掘技术不一定能方便地嵌入到 map-rece 框架中,有些算法需要调整。
大数据和数据挖掘的相似处或者关联在于: 数据挖掘的未来不再是针对少量或是样本化,随机化的精准数据,而是海量,混杂的大数据,数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。这一过程也是质量管理体系的支持过程。在实用中,数据分析可帮助人们作出判断。
拓展资料:
大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》 中大数据指不用随机分析法(抽样调查)这样捷径,而采用所有数据进行分析处理。大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性)。
Ⅳ 什么是社会网络分析法
社会网络分析方法是由社会学家根据数学方法、图论等发展起来的定量分析方法。
社会网络分析是对社会网络的关系结构以及属性加以分析的一套规范和方法。它又被称为结构分析法(structural analysis)
社会网络分析不仅是对关系和结构加以分析的技术,还是一种理论方法--结构思想。
社会网络分析是社会学领域比较成熟的分析方法,该方法可以解决一些社会学的问题。
社会网络要素:
①行动者,在社会网络中用节点表示;
②关系,在社会网络中用剑线表示,关系的内容可能是友谊、借贷或是沟通,其关系可以是单向或双方,且存在关系强度的差异,关系不同即构成不同的网络
社会网络分析的原理:
关系纽带经常是不对称地相互作用着的,在内容和强度上都有所不同
关系纽带间接或直接地把网络成员连接在一起;故必须在更大的网络结构背景中进行分析
社会纽带结构产生了非随机的网络,因而形成了网络群(network clusters)、网络界限和交叉关联
交叉关联把网络群以及个体联系在一起
不对称的纽带和复杂网络使稀缺资源的分配不平等
网络产生了以获取稀缺资源为目的的合作和竞争行为
社会网络分析方法--数学表达式:
①图论法和矩阵法,这是社会网络分析最基本的方法
②二方关系图和三方关系图
③图的矩阵表达
④反应行动者的关系图。通过网络密度、结点度、割点、桥等指标进行具体测量距离,行动者之间的距离越小,意味着他们之间的联系越密切,交流互动越充分。由此可以了解一个网络中行动者之间的分化与差异
Ⅵ 社会网络分析与社会网络理论是一个概念吗 还是包含与被包含的关系
分析是动作
理论是概念
一个是动词一个是名词。理论是分析的基础,分析是理论的补充。
Ⅶ 什么是大数据分析与挖掘
大数据也不仅仅是一个新名词,而是一场无法避开的风暴。举个例子吧,在美国沃尔玛超市,尿布与啤酒这两个风马牛不相及产品通常摆在一起出售,而且销售量还相当不错。原来啊,是沃尔玛利用庞大的数据系统,对其顾客的购物行为进行购物篮分析时发现,一些年轻的父亲下班后经常到超市买婴儿尿布,他们中40%的人同时也为自己买一些啤酒。因此,超市将两者摆在一起出售后,取得了销量倍增的效果。
Ⅷ 求助怎么做社交网络大数据挖掘和分析
网络上用户的评论中的赞扬、喜好、抱怨等信息其实蕴含着巨大的商机,它是我们窥探竞争对手产品弱点以及发现新的用户需求与喜好的丰富来源。这些信息对于公关部门、品牌部门、研发部门深入了解用户状态与心理非常有帮助。好的口碑传播可以推动企业的产品销售,而负面口碑的传播可以迅速导致企业的危机。
企业形象的构成:产品形象、媒介形象、组织形象、标识形象、人员形象、文化形象、 环境形象、社区形象。
对于一家知名企业,关于网络口碑需要了解以下问题: 用户意见表达平台中关于自己品牌的言论有哪些?分属哪些类别?哪些具有重要反馈意义?哪些具有正面价值?哪些具有负面价值?究竟是谁在何时发表的这个意见?有多少人看了这个意见?有多少人回复了这个意见?哪些需要引导?哪些需要应对?哪些需要危机预警?用户意见表达平台中关于竞争品牌的言论有哪些?分属哪些类别?哪些具有重要反馈意义?哪些具有正面价值?哪些具有负面价值?哪些需要利用?
实时收集分类整理用户的各种评价信息是公司口碑监测的重点。
[多瑞科舆情数据分析站系统重点信息预警流程图]
网民作为消费者的一部分,充分利用了网络内容的公开性、个人私密性以及信息互动性,通过论坛、贴吧、博客、微博、微信等网络媒体自由地抒发、评论对某种消费品品牌的观点和看法。及时了解企业品牌口碑现状及舆论导向,把握和引领消费者的评价,已经成为各大企业维护和扩大品牌知名度,改进自己的产品,加速占领市场的有效战略和措施。对于一个企业来说,企业的价值就是企业的形象,与企业相关口碑的好坏,直接会影响企业的发展。如何对于自家企业的产品、竞争行业有一个比较清晰和客观的认识,多瑞科舆情数据分析站提供的企业形象引导在其中就起到了相当大的作用。目前在做新企业形象调研的公司和企业机构很多,但是真正起到实际效果、真正让客户满意的却并不多见,而在这些少数受到好评的机构当中,多瑞科舆情数据分析站系统将不断完善这项服务。
解决关键
集团企业有别于一般企业的舆情监测,他其实有若干的监测主体,每一个企业就是一个监测主体;同时各企业的经营业务可能不同,要充分考虑到系统是否支持对多业务的采集、分析和处理。及时全网获取互联网企业品牌、产品评价、所属行业信息,为企业发展决策提供参考。
解决方案
多瑞科舆情数据分析站系统通过对海量网络舆论信息进行实时的自动舆情采集,舆情分析,舆情汇总,舆情监视,并识别其中的关键舆情信息,及时通知到相关人员,对于企业关注的重点信息,可以自行添加目标监测网站,用户可以很容易地对目标网站进行可视化分析,配置出采集任务文件,加入调度过程,从而可以任意修改,增加,移除监测目标,真正实现第一时间应急响应,为企业形象舆论导向及收集网友意见提供直接支持的一套信息化平台。时刻关注一个公司的企业形象,可以洞察文化的系统概貌和整体水平,也可以评估它在市场竞争中的真正实力。一个企业良好的形象主要表现在:企业环境形象、产品形象、领导和员工的形象,对于多瑞科舆情数据分析站内关键词的设置可以从这些方面着手,例如:“某公司某某董事长”等等。
实施收益
获取互联网企业品牌、产品评价、所属行业信息,为企业发展决策提供参考。
Ⅸ 如何用python进行大数据挖掘和分析
毫不夸张地说,大数据已经成为任何商业交流中不可或缺的一部分。桌面和移动搜索向全世界的营销人员和公司以空前的规模提供着数据,并且随着物联网的到来,大量用以消费的数据还会呈指数级增长。这种消费数据对于想要更好地定位目标客户、弄懂人们怎样使用他们的产品或服务,并且通过收集信息来提高利润的公司来说无疑是个金矿。
筛查数据并找到企业真正可以使用的结果的角色落到了软件开发者、数据科学家和统计学家身上。现在有很多工具辅助大数据分析,但最受欢迎的就是Python。
为什么选择Python?
Python最大的优点就是简单易用。这个语言有着直观的语法并且还是个强大的多用途语言。这一点在大数据分析环境中很重要,并且许多企业内部已经在使用Python了,比如Google,YouTube,迪士尼,和索尼梦工厂。还有,Python是开源的,并且有很多用于数据科学的类库。所以,大数据市场急需Python开发者,不是Python开发者的专家也可以以相当块速度学习这门语言,从而最大化用在分析数据上的时间,最小化学习这门语言的时间。
用Python进行数据分析之前,你需要从Continuum.io下载Anaconda。这个包有着在Python中研究数据科学时你可能需要的一切东西。它的缺点是下载和更新都是以一个单元进行的,所以更新单个库很耗时。但这很值得,毕竟它给了你所需的所有工具,所以你不需要纠结。
现在,如果你真的要用Python进行大数据分析的话,毫无疑问你需要成为一个Python开发者。这并不意味着你需要成为这门语言的大师,但你需要了解Python的语法,理解正则表达式,知道什么是元组、字符串、字典、字典推导式、列表和列表推导式——这只是开始。
各种类库
当你掌握了Python的基本知识点后,你需要了解它的有关数据科学的类库是怎样工作的以及哪些是你需要的。其中的要点包括NumPy,一个提供高级数学运算功能的基础类库,SciPy,一个专注于工具和算法的可靠类库,Sci-kit-learn,面向机器学习,还有Pandas,一套提供操作DataFrame功能的工具。
除了类库之外,你也有必要知道Python是没有公认的最好的集成开发环境(IDE)的,R语言也一样。所以说,你需要亲手试试不同的IDE再看看哪个更能满足你的要求。开始时建议使用IPython Notebook,Rodeo和Spyder。和各种各样的IDE一样,Python也提供各种各样的数据可视化库,比如说Pygal,Bokeh和Seaborn。这些数据可视化工具中最必不可少的就是Matplotlib,一个简单且有效的数值绘图类库。
所有的这些库都包括在了Anaconda里面,所以下载了之后,你就可以研究一下看看哪些工具组合更能满足你的需要。用Python进行数据分析时你会犯很多错误,所以得小心一点。一旦你熟悉了安装设置和每种工具后,你会发现Python是目前市面上用于大数据分析的最棒的平台之一。
希望能帮到你!
Ⅹ 简述大数据挖掘 ,大数据开发,大数据分析的区别,顺序
简单点来说,大数据开发就是做大量数据的分布式计算的。数据分析主要是做数据的收集、挖掘、清洗、分析,最后形成分析报告想学的话可以参考下科多大。