什么是大数据测试
A. 怎样提升自己的大数据测试经验
业务篇
1.业务为核心,数据为王
· 了解整个产业链的结构
· 制定好业务的发展规划
· 了解衡量的核心指标
有了数据必须和业务结合才有效果。
需要懂业务的整体概况,摸清楚所在产业链的整个结构,对行业的上游和下游的经营情况有大致的了解。然后根据业务当前的需要,指定发展计划,从而归类出需要整理的数据。最后一步详细的列出数据核心指标(KPI),并且对几个核心指标进行更细致的拆解,当然具体结合你的业务属性来处理,找出那些对指标影响幅度较大的影响因子。前期资料的收集以及业务现况的全面掌握非常关键。
2.思考指标现状,发现多维规律
· 熟悉产品框架,全面定义每个指标的运营现状对
· 比同行业指标,挖掘隐藏的提升空间
· 拆解关键指标,合理设置运营方法来观察效果
· 争对核心用户,单独进行产品用研与需求挖掘
业务的分析大多是定性的,需要培养一种客观的感觉意识。定性的分析则需要借助技术、工具、机器。而感觉的培养,由于每个人的思维、感知都不同,只能把控大体的方向,很多数据元素之间的关系还是需要通过数据可视化技术来实现。
3.规律验证,经验总结
发现了规律之后不能立刻上线,需要在测试机上对模型进行验证。
技能篇
1.Excel是否精钻?
除了常用的Excel函数(sum、average、if、countifs、sumifs、offset、match、index等)之外,Excel图表(饼图、线图、柱形图、雷达图等)和简单分析技能也是经常用的,可以帮助你快速分析业务走势和异常情况;另外,Excel里面的函数结合透视表以及VBA功能是完善报表开发的利器,让你一键轻松搞定报表。
2.你需要更懂数据库
常用的数据库如MySQL,Sql Server、Oracle、DB2、MongoDB等;除去SQL语句的熟练使用,对于数据库的存储读取过程也要熟练掌握。在对于大数据量处理时,如何想办法加快程序的运行速度、减少网络流量、提高数据库的安全性是非常有必要的。
3.掌握数据整理、可视化和报表制作
数据整理,是将原始数据转换成方便实用的格式,实用工具有Excel、R、Python等工具。数据可视化,是创建和研究数据的视觉表现,方便业务方快速分析数据并定位具体问题,实用工具有Tableau、FineBI、Qlikview.
如果常用excel,那需要用PPT展示,这项技能也需要琢磨透。如果用tableau、FineBI之类的工具做数据可视化,FineBI有推送查看功能,也就是在企业上下建立一套系统,通过权限的分配让不同的人看到权限范围内的报表。
4.多学几项技能
大多数据分析师都是从计算机、数学、统计这些专业而来的,也就意味着数学知识是重要基础。尤其是统计学,更是数据分析师的基本功,从数据采集、抽样到具体分析时的验证探索和预测都要用到统计学。
现在社会心理学也逐渐囊括到数据分析师的能力体系中来了,尤其是从事互联网产品运营的同学,需要了解用户的行为动向,分析背后的动机。把握了整体方向后,数据分析的过程也就更容易。
B. 大数据是什么意思
大数据是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产。
大数据是一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。
大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换而言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。
从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘。但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。
(2)什么是大数据测试扩展阅读:
大数据的应用
1、洛杉矶警察局和加利福尼亚大学合作利用大数据预测犯罪的发生。
2、google流感趋势(Google Flu Trends)利用搜索关键词预测禽流感的散布。
3、统计学家内特.西尔弗(Nate Silver)利用大数据预测2012美国选举结果。
4、麻省理工学院利用手机定位数据和交通数据建立城市规划。
5、梅西百货的实时定价机制。根据需求和库存的情况,该公司基于SAS的系统对多达7300万种货品进行实时调价。
6、医疗行业早就遇到了海量数据和非结构化数据的挑战,而近年来很多国家都在积极推进医疗信息化发展,这使得很多医疗机构有资金来做大数据分析。
C. 大数据测试需要学什么
首先是基础阶段。这一阶段包括:关系型数据库原理、LINUX操作系统原理及应用。在掌握了这些基础知识后,会安排这些基础课程的进阶课程,即:数据结构与算法、MYSQL数据库应用及开发、SHELL脚本编程。在掌握了这些内容之后,大数据基础学习阶段才算是完成了。
接下来是大数据专业学习的第二阶段:大数据理论及核心技术。第二阶段也被分为了基础和进阶两部分,先理解基础知识,再进一步对知识内容做深入的了解和实践。基础部分包括:布式存储技术原理与应用、分布式计算技术、HADOOP集群搭建、运维;进阶内容包括:HDFS高可靠、ZOOKEEPER、CDH、Shuffle、HADOOP源码分析、HIVE、HBASE、Mongodb、HADOOP项目实战。
完成了这部分内容的学习,学员们就已经掌握了大数据专业大部分的知识,并具有了一定的项目经验。但为了学员们在大数据专业有更好的发展,所学知识能更广泛地应用到大数据相关的各个岗位,有个更长远的发展前景。
第三阶段叫做数据分析挖掘及海量数据高级处理技术。基础部分有:PYTHON语言、机器学习算法、FLUME+KAFKA;进阶部分有:机器学习算法库应用、实时分析计算框架、SPARK技术、PYTHON高级语言应用、分布式爬虫与反爬虫技术、实时分析项目实战、机器学习算法项目实战。
D. 软件测试出来之后可以做大数据测试不
可以,需要你学习掌握更多的大数据技术、Hadoop、Maprece等等技术。
对于从事大数据测试的软件测试工程师而言,与传统的测试工作相对比,可能会面临的以下几个可能的挑战:
自动化
自动化测试是从事大数据测试必备的技术,但自动化测试工具可能并不具备处理测试过程所引发的异常的能力,意味着现有工具可能并不适用,编程能力将是更好的一种技能。
虚拟化
当前业内大规模使用虚拟化技术,但虚拟机的延迟有可能造成大数据实时测试处理的异常。
对大数据而言,管理影像信息也将是一个巨大的问题:
1、海量数据集
2、需要验证的数据量巨大,而且需要更快的处理速度
3、需要有效的自动化测试手段
4、需要尽可能的跨平台
E. 什么是大数据以及大数据的特性有哪些
大数据技术是指从各种各样海量类型的数据中,快速获得有价值信息的能内力。适用于大数据容的技术,包括大规模并行处理(MPP)数据库,数据挖掘电网,分布式文件系统,分布式数据库,云计算平台,互联网,和可扩展的存储系统。
大数据具备以下4个特性:
一是数据量巨大。例如,人类生产的所有印刷材料的数据量仅为200PB。典型个人计算机硬盘的容量为TB量级,而一些大企业的数据量已经接近EB量级。
二是数据类型多样。现在的数据类型不仅是文本形式,更多的是图片、视频、音频、地理位置信息等多类型的数据,个性化数据占绝对多数。
三是处理速度快。数据处理遵循“1秒定律”,可从各种类型的数据中快速获得高价值的信息。
四是价值密度低。以视频为例,一小时的视频,在不间断的测试过程中,可能有用的数据仅仅只有一两秒。