运营商大数据核心资产
作者 | 傅一平
来源 | 与数据同行
最近中国移动提出了战略,显示其在政企市场进一步拓展的雄心,在这个背景下,重新探讨下运营商的大数据变现很有意义。虽然近半年“大数据圈”似乎有点风声鹤唳,但对于合法合规的进行大数据业务的企业来讲没有什么影响。
下面笔者就结合自身实践,给出未来2-3年运营商大数据价值变现的十个趋势判断,仅代表个人看法,希望于你有所启示。
1、行业服务边界不断拓展
依托于运营商潜力巨大的数据资源和政企市场渠道资源,经过多年的市场培育和拓展,当前运营商大数据业务从原来的金融、旅游等行业逐步拓展到政府、旅游、交通、教育、商业、招聘、医疗等各个各业。
运营商ICT业务在推进中,也孕育了不少大数据业务的商机,大数据业务则反过来促进了ICT业务的发展,因为大数据除了业务价值,还有一定的社会品牌效应,两者通过融合可以形成合力。
随着企业数字化转型的加快及产业互联网的崛起,作为未来社会基础设施的大数据,将与云计算、人工智能、物联网、区块链一起,在行业领域开疆扩土,其应用的边界几乎是无限的。
2、进入行业应用的深水区
大数据在行业领域拥有着巨大的潜力并不意味着运营商就能分得多少杯羹。虽然运营商大数据业务当前在金融、旅游等行业已经有所斩获,但这些行业低垂的果实基本要被摘光了。
以金融为例,4-5年前运营商切入的验真,失联触达等业务,当前仍然是运营商大数据变现的主力,但金融行业并未如运营商原先预料的那样,在贷前、贷中、贷后中给予运营商更多的机会,运营商很多变现业务模式的拓展基本是停滞的,起码不够快。
在大量的其他行业领域,运营商往往只能做到蜻蜓点水,而无法聚沙成塔,比如业务的复购率很低。
从定性的角度讲,运营商对于行业的理解还是比较浅的,其大量的行业应用游走在企业的核心生产流程之外,大数据似乎是奢侈品,而不是必需品,因此粘性是不够的。
以金融验真这个业务为例,其附加值并不高,且容易被替代,想想这几年对于金融行业的理解又增加了多少呢?这些都是需要反思的地方。
笔者曾经在智慧交通相关文章中提到:运营商的数据在很多领域其实是很有前途的,但必须深耕,要理解这个行业的业务,通晓这个行业的算法,不停的打磨产品,从而逼近核心。
可以这么说,运营商大数据将很快进入行业应用的深水区,为了顺应这个趋势,运营商需要建立专业化的组织去攻坚克难,挑战很大。
3、与互联网公司的竞争加剧
互联网应该没有把运营商当成主要的大数据竞争对手,但运营商进入这个领域会跟互联网公司形成事实上的竞争,无论是新零售,智慧交通等等,进入者都会感受到互联网巨头的压力。
比如运营商要为大型商超提供数据服务,但互联网公司早就捷足先登,新零售是互联网出的概念,当运营商还在进行自身渠道的艰难转型时,互联网公司线下商业的版图已经规划好了,当然也包括了大数据业务。你到商超谈,人家一开口就提XX通怎么样怎么样。
当然还不仅仅是这些。
无论是互联网公司在To G上自顶向下的推广策略,还有诸如城市大脑单一采购来源的霸气,都在说明巨型互联网公司在这些领域的影响力。
运营商要获得机会,得动用一切可用的资源,发挥自己数据的差异化价值,由点及面去寻找机会。实践证明,管道数据的价值是巨大的,但巨型互联网公司的数据也越来越好,这是不得不面对的现实。
4、从要素驱动向要素+能力驱动转型
运营商当前在大数据变现上的突破只能说摘取了低垂的果实,但这种通过简单数据加工形成的数据产品竞争力是不够的,也是不可持续的。
比如做智慧交通,如果位置精度和覆盖度不够,连速度都测不准,根本做不出高质量的数据产品。
应该来讲,运营商从来就没有现成的、高精度的、可以到用户级别的位置数据,粗精度的原始位置数据未来可能连支撑运营商自己的业务转型都不够,运营商需要充分挖掘现有位置数据的潜力,通过建模等方式把较为精准的位置模型做出来,才能有基本的大数据变现底蕴。
位置精度的提升虽然是一小步,但却是对外大数据变现的一大步。位置准了,运营商对于人们整个线下生活的理解就准了,无论是客流,路网,OD等等都不再话下。
现在运营商依靠数据资源这个要素能走出第一步是不错的,但光靠资源驱动已经不够了,能力必须过来接棒,没有能力加持的运营商大数据变现前景暗淡。
因此,运营商大数据变现未来不再是躺着挣钱,而是要从原始数据的驱动向数据+能力双驱动转型,这个能力包括人才、技术、数据、产品、运营等等,这是不容置疑的。但如果只是空喊着口号不敢探索尝试,则也许连能力提升的机会都没有。
5、持续强化大数据合作的生态
大数据变现从底向上涉及平台、数据、建模、产品、方案、渠道、咨询、运营、安全等一系列的内容,运营商无法一手包办,因此必须建立合作的生态。
从业务的角度看,缺乏渠道合作伙伴、缺乏行业解决方案对于运营商都是很现实的挑战,最大的痛苦莫过于不知道商机在哪里,不知道自己想做的这个数据或产品有没有前途。运营商不可能瞬间将现有的客户经理队伍转为数字化产品的销售队伍,毕竟知识结构的要求不一样。
虽然可以采取MVP的方式推进,但一方面试错的成本摆在那里,运营商也并没有资本为其背书,另一方面时间成本也大了点。现在很多运营商都有合作伙伴招募计划,这是很好的尝试,但符合要求的合作伙伴还是太少了。
从开放的角度看,中国移动的梦网曾经创造过辉煌,但开放这句口号不是随便喊喊的,你得建立一套标准,清晰的告诉别人你有什么能力,然后如何能方便的接入。
比如当我们在互联网大会展示城市实验室产品的时候,发现仍然有那么多的人惊讶于运营商竟然还能做这个,就说明我们在开放这条道上还有很长的路要走。
而当笔者第一次访问阿里云网站的时候,其较好的使用体验给我留下了深刻的印象,随后定期的营销推送起码说明是用心的,又比如笔者第一次使用腾讯云域名申请时,其后腾讯云客服的电话调研也是很及时的。
因此,能否跟更广泛的合作伙伴建立连接,能否建立起开放的平台,能否确保信息的安全,在很大程度上决定了运营商大数据变现的蛋糕能做多大。
6、通过集中化获得溢价能力的趋势将加强
由于历史原因运营商的大数据实际是分省存储和运营的,这跟互联网公司天然的集中统一的数据基因是完全不同的。虽然一些运营商在集中化上做了很多努力,但相对互联网公司,还是有一些差距。
各省本地化做一些产品虽然带来了灵活性,但造成了事实上的重复开发,这种模式在创新阶段其实没什么问题,但最大的问题是各个省能否有足够的资源去保证产品的持续优化,无论从数据的角度,还是从运营的角度看,我们都需要一定的集约化机制来确保高效低成本的运作。
但这还仅仅是一个方面。
另一方面,相较互联网,由于数据的割裂,运营商基于单个省的数据做出的产品溢价能力不高,往往只能服务于特定区域,在很多竞争中会处于劣势,比如当前运营商基于位置数据的应用很多,但为什么上网数据的变现却很少呢?
这个不仅仅是简单的https问题,更是因为客户对于上网数据的诉求基本是全国的,没有地域的概念,这让运营商失去了很多突破的机会。
因此,运营商的大数据在一个省创新后迅速全网复制是一直要坚持的策略,而基于集中化的数据进行创新是提升产品竞争力的一个关键。
7、运营商DICT战略将使得大数据获得更大支持
随着数字经济的发展和行业数字化的进步,传统产业转型升级的需求强劲,运营商和云服务提供商,均在强化云、网、端、边协同,推出“云+网+DICT”智能化解决方案,帮助企业实现更深层次的数字化转型。
运营商的政企2B市场是当前关注的焦点,而云+DICT(DT+CT+ICT+IDC)又是其中的关键,这意味着未来各种资源会逐步会向DICT倾斜,大数据需要抓住这个机会,通过DICT的融合来促进大数据业务的规模化发展,所谓“借势”。
另外,当前三大运营商已经宣布了5G商用,中国移动也发布了了“5G+”计划,其中包括“5G+AICDE”计划,“5G+AICDE”是将5G作为接入方式,与人工智能(AI)、物联网(IoT)、云计算(Cloud Computing)、大数据(Big Data)、边缘计算(Edge Computing)等新兴信息技术深度融合,准备打造以5G为中心的泛智能基础设施。
5G时代人和物、物和物之间的连接产生的数据类型将会更多,5G更密集的基站布点意味着更高的定位精度,5G业务形式更加多样意味着管道中的数据内容会爆发性增加,运营商对于客户行为的刻画能力将进一步加强,每项垂直5G行业应用都将会与大数据有着千丝万缕的关系,这些对于运营大数据的发展是利好。
8、日益趋紧的数据安全要求对于运营商既是挑战也是机遇
运营商虽然拥有海量的数据,但很多省公司并未实质性的开展大数据业务,很多是基于安全的考量。即使是正在开展大数据变现业务的运营商省份,合规合法经营也是其开展大数据业务的底线,运营商对于大数据的业务创新是相对保守的。
事实上,运营商当前能开展的各项大数据新业务,都需要经过内部极其严格的法律、安全多道审核,加上行业、集团、省出台的各种安全管理规范的约束,还有定期的安全检查,都让运营商大数据业务从一出生就经历着内部一轮轮的安全洗礼。
2019年持续发酵的各种信息安全事件让大数据圈似乎如履薄冰,但其打击的还是各种违法经营和黑市交易。事实上,经过新一轮的洗盘,运营商也许会面临较以往更好的商业环境,数据可能会变得更为稀缺,毕竟以前黑市的数据交易会导致良币驱逐劣币的现象,当然这也只是一种猜测。
可以肯定的是,未来国家对于信息安全管控的趋紧会使得大数据业务的创新变得更具挑战性,但合规合法的进行大数据价值挖掘,助力中国经济高质量发展始终是主流,运营商虽然会面临安全上的挑战,但也有更多的机会。
9、运营商大数据对于TO C业务的探索不会停止
互联网公司TO C业务前期是靠钱烧出来的,毕竟消费者是趋利的,拥有高体验的产品和一定基础的用户后,互联网公司才有了珍贵的海量数据,这个时候大数据才有用武之地,反过来赋能业务发展,这是互联网公司应用大数据的本质。
运营商天然就有大数据,但大数据变现的实践还是告诉我们,运营商的数据维度还是不够丰富,比如缺乏消费数据,而巨型的互联网公司通过应用的丰富不断积累着更多维度的数据。
事实上,当前运营商的数据维度拓展基本是停滞不前的,如果不加以改善,在不久的将来,运营商的数据优势会逐步变小,最终会影响到产品的竞争力。
现在运营商建立了很多专业公司,比如中国移动的咪咕,有人会质疑这些公司能否赚钱,姑且不从战略的角度思考这个问题,即使站在大数据的角度看,这些公司的拓展能够让运营商拥有更丰富的数据,这就很有价值。最近中移金科成立了,支付数据对于DT有多重要不用解释吧,因此意义是很深远的。
其实做大数据产品的,哪个没有点TO C的梦想?希望运营商能基于自己的资源优势,结合大数据的差异化特点,能够打造出真正的既卖座又叫好的TO C产品。
10、运营商对于低价值密度的大数据处理能力要求会大幅提升
运营商的DPI数据具有典型的大数据特征,有潜力但价值密度低,但这个数据是运营商除位置数据以外最珍贵的数据,很多人说这个数据在运营商变现中实际没啥应用场景,或者言必称https,那是比较业余的说法。
随着5G时代的到来,对于DPI数据的有效开采挖掘对于运营商大数据变现是核心的基础工作之一。
首先,DPI这个技术原生是为网络优化服务的,比如很多字段对于数据变现没有价值,能否考虑更高性价比的处理手段?这个就需要运营商针对性的进行研究,比如从客户洞察、精准营销和价值变现的角度去高效低成本的采集管道中的数据。
其次,5G海量、低延时、非结构数据的特点,将进一步促进数据存储、处理和分析技术的进步,即使是当前的4G,从采集到应用的时延也是比较高的,很难达到场景式营销的要求,而且保留的周期也非常有限。
最后,5G大数据的价值密度将进一 步降低,对AI的能力要求将更高,即使是针对当前的4G数据,运营商的NLP等能力储备也是不够的,因此要尽快补足短板。
当然,以上十个趋势只是笔者的个人判断,受限于自己的能力和视野,以上谈的肯定有很多不到位的地方,权当笔者抛砖引玉,如果能引发一点思考,那就更好了。
② 运营商大数据都有什么优点
1、数据非常精准
运营商大数据最主要的一个优点就是数据非常的精准。可以获取的数据有很多,比如某些品牌的竞价还有优化。还有一种情况是,如果关键词的排名非常的靠前。这种情况下,那些网站访客,还有一些软件的用户,这些客户的搜索意向非常的强,而且也非常的主动。
2、数据的转化率比较高
虽然在很多情况下排名的网站,在点击的过程中,成本都非常的高,但是获得的数据是非常精准的。这个时候可以参考同行的一些数据,这样可以把同行的数据作为抓取源。然后再用相对比较低的价格,这些同领域的客户都争取到,这一点的优势是非常明显的。
3、数据具有可控性
运营商大数据在运行的过程中,很多情况下都是自己抓模型。这样就可以马上知道是从哪些网站或者是哪些软件里面获得的这些数据。所以说数据的可控性是非常强大的,另外运营商大数据在运行的过程中,数据也是非常全的,它覆盖了很多个领域,也覆盖了很多的网站,除此之外,这些数据还覆盖了很多的软件,对数据的全面更加具有优势了。
关于运营商大数据都有什么优点,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
③ 为什么说运营商大数据其实更有价值
你是不是喜欢她? 喜欢就出击呗,这样跟你开玩笑的女孩子,一般都是对你有点意思的额
④ 大数据时代,电信运营商如何“点石成金”
大数据风起云涌。对于大数据中蕴含的商业价值,有人形象地将其称为“数据钻出石油”。充分利用大数据技术,从海量堆积的交互数据中发现带有趋势性、前瞻性的信息,能够孕育出惊人的社会价值和商业价值。 然而,即便放眼全球,我们看到的大数据应用案例还鲜有电信运营商的身影,与互联网领域的诸多探索相比,他们略显平淡,大规模钻出“石油”就更谈不上了。面对这种情况,相信很多业内人士都在思考这些问题:大数据究竟会给电信运营商带来哪些新机遇?大数据时代下的电信运营商面临什么样的挑战?电信运营商今后将如何运筹帷幄、构建面向智慧运营的大数据体系? 从4W到4V: 运营商拥有先天优势 根据信息爆炸时代的特征,业界将大数据总结为“4V”体量(Volume)、多样(Variety)、速度(Velocity)和价值(Value)。体量意味着海量的数据,多样是指数据类型繁多,速度主要指数据被创建和移动的速度快,而价值是处理数据的目标、从各种形式呈现的复杂数据中挖掘有用的东西。 电信运营商作为信息服务的基础服务商,其提供的服务用一个简单的词来概括就是“4W”Who、When、Where、What,在使用服务时,哪些用户、需要联系谁、什么时间、处于什么位置、做些什么,这些信息无疑都需要经过运营商的管道。 对比“4V”和“4W”,我们可以发现两者之间的契合之处,通信用户数以亿计的基数保证了数据的海量和多样性,通信网络的实时承载保证了数据的速度,更重要的是,运营商还可以搜集到用户位置、大体收入等有价值的数据,进而为精准营销提供参考。因此,运营商在掌握用户行为数据方面具有先天优势,这是一般互联网厂商所望尘莫及的。随着智能手机和高速网络的普及,运营商能够获得的用户行为数据还将更为丰富。 数据科学家、《大数据时代》的作者维克托·迈尔·舍恩伯格表示,在大数据时代,拥有数据的公司无疑将取得巨大的成功。因为他们具有洞察力,大数据会提供他们全新的洞察力。从这个角度看,运营商无疑坐拥一座天然的宝藏,但是能否挖掘、提炼出这些矿藏中的价值将决定运营商能否把握住大数据带来的机遇。 由大入微: 构建智慧的大数据体系 由微入大易,由大入微难。对电信运营商来说,将无数具体而微的信息汇集起来其实并不难,真正的难点在于如何点石成金,如何“驾驭”这纷繁复杂的数据,如何存储、整合、分析、汲取出真正有价值的内容,并创造性地使用它。 大流量并不一定带来大数据,电信运营商获得的数据中大部分都是“桀骜不驯”的它们被称为非结构数据,这种数据本身并没有太多价值。目前,电信运营商在大数据方面的探索还仅仅处于起步阶段:一方面,用户的行为、轨迹、状态等数据散在网络各个环节中,形成信息资产的成本非常高;另一方面,运营商大数据挖掘手段还很不充足,如何从庞大的数据中分析出有价值的信息并找到合理的商业模式,提高“驾驭”数据的能力,成为电信运营商面临的挑战。 那么电信运营商该如何去构建面向智慧运营的大数据体系? 对电信运营商来说,可以利用大数据实现自身的精确化营销和精细化运营,在这方面,国内已经有运营商作出了尝试。使用Hadoop等大数据处理工具,通过分析用户的兴趣图谱、关系图谱、行为定向,再结合自身的业务推出量身定制的服务,如针对出差较多的商务人士,向他们推荐漫游套餐;对爱好移动上网的用户,向他们提供流量包……这本身就属于大数据应用的范畴,而且,运营商通过对业务资源和财务等数据的综合分析,可以让决策层进行快速的市场决策,从而抢占市场制高点。 未来,运营商还可以拓展第三方模式,加大开放合作力度,与产业链各个环节开展合作,加快对大数据经营商业模式的探索,不断释放其管道中庞大数据的潜在力量,将数据转化成“真金白银”。在这方面,国外电信运营商的探索给我们提供了思路。西班牙电信去年成立了名为“动态洞察”的大数据业务部门,它可以为客户提供数据分析打包服务,帮助客户把握重大变化趋势。法国电信的移动业务部门也开始尝试挖掘大数据的潜在价值,比如,它承建了一个法国高速公路数据监测项目,对每天产生的几百万条记录进行分析,从而提高了道路通畅率。更具颠覆性的是Verizon,其数据业务的盈利收入在其整个业务中占比非常高,其中就有联合第三方机构对其用户群进行大数据分析,再将有价值的信息提供给政府或企业获取的额外价值。 分析人士指出,数据化程度越高的行业,其大数据的应用场景越多,能够带来的价值也就越高。数据重构商业,虽然国内在这方面的探索还未形成规模,但对运营商来说却代表着前进的方向凭借自身优势,将数据分析包装为服务,提供给政府、商场、银行等第三方机构进行决策,从而实现商业模式的创新,并在与互联网企业的竞争中占得先机。不过,需要明确的是,这里的数据包装并不是非法采集用户个人信息,更不是贩卖用户个性化隐私,真正的大数据应该是用加工实现增值,用分析来指导决策,而非原始数据信息本身的低层次滥用。
⑤ 运营商大数据到底如何应用
运营商大数据到底如何应用?
运营商大数据,可以根据不同行业和不同企业,分配和分析符合自己行业的精准客户数据资源!
相关企业搜集自己行业的网站,app,400电话,固话提供过来,就可以建模实时抓取,获取精准客户数据,相关企业可以通过外呼,短信等触达方式去转化和成交。
需要合作看评论
⑥ 运营商大数据真的有效果吗
运营商大数据真的有效果吗?
运营商大数据如果是对于企业获取精准客户资源版是有效果的,比如你是做财税的权,你就搜集相关财税的网站,app,400电话,固话提供过来,自己的同行的均可,通过运营商大数据建模可以实时抓取 精准客户数据资源,可以有外呼,短信两种触达方式进行转化与成交。
需要合作看评论
⑦ 运营商大数据靠谱吗
运营商大数据当然是靠谱的,那些数据都是运营商的大量用户的使用数据汇总而成的,总体上是比较精确的。
⑧ 2020年运营商大数据市场价值大不大 有何价值
【导读】在大数据行业发展过程中,运营商扮演者极其重要的角色,是大数据发展过程中非常重要的一环,今年来,运营商大数据已经应用到了很多行业和领域,那么2020年运营商大数据市场价值大不大?有何价值呢?下面我们就来具体了解一下吧。
1、运营商大数据的市场应用
运营商大数据建模分析技术,运营商掌握着全国近15亿用户,用户15亿用户数据资料进行实时监控,分行业建立用户画像具体分析,给各企业各行业各领域带来了更先进的获客,推广与客户关系管理平台。
(1)房产行业获客应用
借助强大的运营商大数据建模分析,和运营商用户数据存储分析能力,通过用户画像和完善的行业标签帮助房产行业去挖掘和分析其潜在的有意向购房的客户群体。依据对房产类网站,app,400电话,固话,小程序,关键词等实时用户数据进行实时数据监控和数据管理,紧密配合CRM平台对精准客户资源进行获客推广服务和管理,实现精准用户数据上的合理应用和转化成交。
(2)教育行业获客应用
借助运营商大数据建模挖掘分析和精准的算法对教育类网站,app,400电话,固话,小程序,关键词实时访问,活跃,来电者,搜索者用户数据做用户画像,和行业分析处理,对有意向想接受教育者进行和教育资源分析,从而合理的与相关合作的教育机构进行匹配和部署。
(3)金融行业获客应用
根据用户画像分析:依据金融行业网站,APP,400电话,固话等、从运营商用户上网行为数据、通信行为数据等,去帮助相关金融机构,金融行业企业更加充分的了解自身潜在的客户群体,从而减低业务难度,提高获客转化成交;
2、运营商大数据的应用价值
运营商大数据对我们的企业和不同的行业,领域,以及目前市场的营销推广,获客都产生了重要的影响。从传统营销转为数字营销,数据营销,在大数据时代,我们更应该选择那些正规的规范的运营商大数据获客产品,在避免法律风险的同时还可以让其能够发挥极高的市场价值,带动政企又好又快的发展。
相信大家对于2020年运营商大数据市场价值大不大,已经有了自己的答案,如果已经确定了要在此行业获得长足的发展,那就加油吧,你一定会成功的!
⑨ 智慧狐运营商大数据精准营销针对企业报价
价格多少网上搜不到,应该不便宜,毕竟大数据营销是新兴行业,而且是精准营销,如果数据够精准肯定物有所值