大数据运维的主要工作内容是什么

大数据运维,这里指互联网运维,通常属于技术部门,与研发、测试、系统管回理同为互联网产品技术支答撑的4大部门,这个划分在国内和国外以及大小公司间都会多少有一些不同。

一个互联网产品的生成一般经历的过程是:产品经理(proct manager,非技术部)需求分析、研发部门开发、测试部门测试、运维部门部署发布以及长期的运行维护。

一般来讲国内的互联网运维负责软件测试交付后的发布和管理,其核心目标是将交付的业务软件和硬件基础设施高效合理的整合,转换为可持续提供高质量服务的产品,同时最大限度降低服务运行的成本,保障服务运行的安全。

Ⅱ 大数据的特点主要有什么

大数据的主要特点有:

准确(Veracity)

这是一个在讨论大数据时时常被忽略的一个属性,部分原因是这个属性相对来说比较新,尽管它与其他的属性同样重要。这是一个与数据是否可靠相关的属性,也就是那些在数据科学流程中会被用于决策的数据(而这不同于与传统的数据分析流程),精确性与信噪比(signal-to-noise ratio)有关。

例如,在大数据中发现哪些数据对商业是真正有效的,这在信息理论中是个十分重要的概念。由于并不是所有的数据源都具有相等的可靠性,在这个过程中,大数据的精确性会趋于变化,如何增加可用数据的精确性是大数据的主要挑战。

高速(Velocity)

大数据是在运动着的,通常处于很高的传输速度之下。它经常被认为是数据流,而数据流通常是很难被归档的(考虑到有限的网络存储空间,单单是高速就已经是一个巨大的问题)。这就是为什么只能收集到数据其中的某些部分。如果我们有能力收集数据的全部,长时间存储大量数据也会显得非常昂贵,所以周期性的收集数据遗弃一部分数据以节省空间,仅保留数据摘要(如平均值和方差)。 这个问题在未来会显得更为严重,因为越来越多的数据正以越来越快的速度所产生。

体量(Volume)

大数据由大量数据组成,从几个TB到几个ZB。这些数据可能会分布在许多地方,通常是在一些连入因特网的计算网络中。

一般来说,凡是满足大数据的几个V的条件的数据都会因为太大而无法被单独的计算机处理。单单这一个问题就需要一种不同的数据处理思路,这也使得并行计算技术(例如MapRece)得以迅速崛起。

多样(Variety)

在过去,数据或多或少是同构的,这种特点也使得它更易于管理。这种情况并不出现在大数据中,由于数据的来源各异,因此形式各异。这体现为各种不同的数据结构类型,半结构化以及完全非结构化的数据类型。

Ⅲ 大数据可以应用在哪些方面

可以应用在云计算方面。

大数据具体的应用:

1、洛杉矶警察局和加利福尼亚大学合作利用大数据预测犯罪的发生。

2、google流感趋势(Google Flu Trends)利用搜索关键词预测禽流感的散布。

3、统计学家内特.西尔弗(Nate Silver)利用大数据预测2012美国选举结果。

4、麻省理工学院利用手机定位数据和交通数据建立城市规划。

5、梅西百货的实时定价机制。根据需求和库存的情况,该公司基于SAS的系统对多达7300万种货品进行实时调价。

6、医疗行业早就遇到了海量数据和非结构化数据的挑战,而近年来很多国家都在积极推进医疗信息化发展,这使得很多医疗机构有资金来做大数据分析。

7、及时解析故障、问题和缺陷的根源,每年可能为企业节省数十亿美元。

8、为成千上万的快递车辆规划实时交通路线,躲避拥堵。

9、分析所有SKU,以利润最大化为目标来定价和清理库存。

10、根据客户的购买习惯,为其推送他可能感兴趣的优惠信息。

(3)管理大数据的易扩展阅读:

大数据的用处:

1、与云计算的深度结合。大数据离不开云处理,云处理为大数据提供了弹性可拓展的基础设备,是产生大数据的平台之一。

自2013年开始,大数据技术已开始和云计算技术紧密结合,预计未来两者关系将更为密切。除此之外,物联网、移动互联网等新兴计算形态,也将一齐助力大数据革命,让大数据营销发挥出更大的影响力。

2、科学理论的突破。随着大数据的快速发展,就像计算机和互联网一样,大数据很有可能是新一轮的技术革命。可能会改变数据世界里的很多算法和基础理论,实现科学技术上的突破。

参考资料:

网络--大数据

Ⅳ 大数据容易就业吗 就业岗位有哪些

  1. 大数据岗位来匮乏,正处风口,我自国大数据人才需求达到180万,目前只有不到30万人,人才缺口还将进一步扩大。

  2. 在IT技术中,有不少技术因为人才的饱和,就业竞争力已经相对较大。而大数据的人才需求正处于供不应求的状态,人才的紧缺决定了大数据职位薪资水平,平均8K起步。

  3. 而从工作经验来看,69.1%的企业对求职者的要求是经验不限,这对于正在需求工作,特别是应届大学生而言,无疑是千载难逢的机遇,当下是学习大数据黄金时间点。

  4. 目前国内大数据工程师工作领域大致可分为四类:

    ①数据开发工程师:负责数据接入、数据清洗、底层重构,业务主题建模等工;大数据整体的计算平台开发与应用; 

    ②数据分析师:在拥有行业数据的电商、金融、电信、咨询等行业里做业务咨询,商务智能,出分析报告。

    ③数据挖掘工程师:在多媒体、电商、搜索、社交等大数据相关行业里做机器学习算法实现和分析。

    ④科学研究方向:在高校、科研单位、企业研究院等高大上科研机构研究新算法效率改进及未来应用。

Ⅳ 大数据对于管理理论与实践的影响

大数据对企业管理的影响:
1.大数据对企业管理思想的影响
大数据时代的来临改变了企业的内外部环境,引起了企业的变革与发展。企业越来越智能化,管理实现了信息化。企业中的数据收集、传输利用需要现代管理思想的支撑。
大数据环境下的企业管理应当以人为本,在实践的基础上运用现代信息化技术,采用柔性管理,将数据当做附加资产来看待。企业运营离不开数据的支撑,企业管理当中如果不能够深刻认识到大数据的重要性,仅仅以公司短期盈利作为目标,是缺乏战略性的思考。有效的利用数据分析结果,提前进行预测,抓住市场先机、顾客需求,就能主动赢得市场,才能在企业管理与销售业绩上创造出更大的财富。
2.大数据对企业管理决策的影响
大数据背景下数据的分析利用是企业决策的关键。首先,大数据的决策需要大市场的数据。基于云计算的大数据环境影响到企业信息收集方式、决策方案选择、决策方案制定和评估等决策实施过程,对企业的管理决策产生影响。大数据决策的特点体现在数据驱动型决策,大数据环境下的管理决策对于企业不仅是一门技术,更是一种全新的决策方式、业务模式,企业必须适应大数据环境对管理决策的新挑战。
其次,大数据对决策者和决策组织提出了更高的要求。大数据时代改变了过去依靠经验、管理理论和思想的决策方式。管理决策层根据大数据分析结果发现和解决问题、预测机遇与挑战、规避风险。这就要求决策层具有较高的决策水平。由于大数据背景下需要企业全员的参与,动态变动环境下,决策权力更加分散才有利于企业做出正确的决策。这就要求企业的组织更加趋于扁平化。
3.大数据对企业人力资源管理的影响
人力资源是企业中最宝贵的资源,是企业创造核心竞争力的基础。基于大数据技术,企业将大大提高人力资源管理的效率和质量。有效的加快人力资源工作从过去的经验管理模式向战略管理模式的转变。
公司从员工招聘到绩效考核与培训,积累了大量的各类非线性数据,这些数据都是无形的资产,利用大数据技术,将这些数据进行整合分析利用,能够为企业带来巨大贡献。首先,在员工招聘上,只需将单位用人要求与员工各项能力数据相匹配,结合人力资源招聘的经验,便可轻松选出符合要求的员工。其次,在绩效考核上,进行标准化管理,将员工日常的各类数据进行分析,设定等级标准,即可得出客观公正的考核结果。这大大排除了绩效管理的主观性与不全面性。最后,根据大数据的分析结果,针对不同员工区别培训,更有效率的提高了培训水平。
4.大数据对企业财务管理的影响
大数据使财务管理的模式和工作理念颠覆性的改变。首先,财务管理更加稳健。公司将各类财务数据在大数据技术下进行发掘,提纯出更多有用的财务信息,及早的发现财务风险,为管理决策者提供重要的决策依据,做出正确的决断。其次,财务数据的处理更加及时高效。财务数据在企业日常运营当中举足轻重,企业的各项交易都依赖于财务数据的分析,企业基于大数据,通过对财务数据的分析和处理,能够改进财务管理工作的运行模式,并且是有效率的,企业资金资本运作成本降低和压缩了,利润相应提高了。企业资源最丰富的积累,最基础的财务数据,通过大数据技术进行对财务数据,整理和分析,实现了企业价值增值。
总结:

大数据时代对企业的管理提出了更高的要求。信息化时代下企业每天都在产生大量的数据,大数据时代下,这些数据影响着企业管理的方方面面,它改变着企业的管理思想与管理模式,使企业的决策更加准确高效,使人力资源管理工作更便捷,使企业财务管理稳健、绩效考核客观公正,企业管理中应加强收集分析利用这些数据,确保数据的准确与安全防护。将传统经验、理论管理与大数据管理决策想结合,适应时代发展,将企业做大做强。

Ⅵ 请问大数据的关键技术有哪些

1.分布式存储系统(HDFS)。2.MapRece分布式计算框架。3.YARN资源管理平台。4.Sqoop数据迁移工具。5.Mahout数据挖掘算法库。6.HBase分布专式属数据库。7.Zookeeper分布式协调服务。8.Hive基于Hadoop的数据仓库。9.Flume日志收集工具。

Ⅶ 安全监管大数据,什么是大数据时代的信息安全管理

从消费者的角度来看,在今天万物智能、万物互联的大数据环境下,用户在工作和生活中专几乎每时属每刻都在产生各种数据,并且被各种各样不同形态的产品、服务、设备、机构从各种不同的维度采集、存储、使用甚至交易。用户的账户信息、个人信息等数据,在很多业务平台或者服务中都有关联。在这个过程中,便有了数据安全的问题,所以需要及时的处理这类问题

Ⅷ 对政府服务和管理而言,大数据的大意义是什么

1、创新政府大数据管理思维。

第一,利用大数据形成政府管理的大数据思维。政府需要进一步开放数据信息,提升社会公众对于政府利用大数据技术创新自身管理范式的感知水平。

第二,政府需要强化数据信息整合的力度。政府需要进一步强化对于数据信息的整合与沟通,通过打通不同政府部门之间的“信息孤岛”,进而提升政府协同管理水平。

第三,利用大数据提高服务质量。当前我国政府亟需创建创新型与服务型政府,政府在提供公共服务过程中需要借助大数据相关手段针对社会大众的需求进行及时收集与回应,以此为基础来增强社会大众对于政府服务供给的获得感。

2、利用大数据手段升级政府管理手段。

第一,利用大数据技术完善政府管理专业的人才储备。我国政府管理部门应致力于引进大数据专业领域的人才。政府管理部门通过充实大数据人才队伍,有助于进一步提升政府管理决策的效率,同时鉴于大数据人才的稀缺性,政府不仅需要借助相关的优惠政策与扶持条件。

吸引大数据领域的高水平人才安家落户,更需要充分发挥自身的平台优势,致力于搭建以大数据研究为核心的产学研一体化研究联盟,通过大数据战略联盟的缔结,实现大数据管理人才的自给自足。

第二,利用大数据技术更新政府管理技术储备。

大数据的飞速发展对于网络空间安全提供了较大的挑战。我国政府需要从顶层设计的战略视角制定大数据网络安全保障机制,并进一步强化对于网络空间的管理与治理。

3、利用大数据理顺政府管理运行体系。

第一,利用大数据手段提升决策科学化水平。大数据技术在政策创新、公共危机治理以及行政监督等领域具有得天独厚的技术优势,决策者借助大数据技术能够促进对于大数据的深度挖掘和分析,进而对政府的各类管理事项作出科学预测,以提升决策的合理性与科学性。

大数据技术不仅能够进一步强化政府相关管理决策的指向精准性,同时借助大数据技术自身所蕴含的先进性与前沿性,能够为政府管理科学化提供有力支撑。

第二,借助大数据技术增强政府公共服务产出水平。政府在进行相关公共服务供给过程中,由于不能保障及时有效覆盖社会大众的全部需求,在大数据背景下政府应该通过致力于统一公共服务数据的格式与采集标准,持续推进公共服务资源的重新整合、竭力实现公共服务的均等化。

(8)管理大数据的易扩展阅读

大数据趋势

趋势一:数据的资源化

何为资源化,是指大数据成为企业和社会关注的重要战略资源,并已成为大家争相抢夺的新焦点。因而,企业必须要提前制定大数据营销战略计划,抢占市场先机。

趋势二:与云计算的深度结合

大数据离不开云处理,云处理为大数据提供了弹性可拓展的基础设备,是产生大数据的平台之一。自2013年开始,大数据技术已开始和云计算技术紧密结合,预计未来两者关系将更为密切。除此之外,物联网、移动互联网等新兴计算形态,让大数据营销发挥出更大的影响力。

趋势三:科学理论的突破

随着大数据的快速发展,就像计算机和互联网一样,大数据很有可能是新一轮的技术革命。随之兴起的数据挖掘、机器学习和人工智能等相关技术,可能会改变数据世界里的很多算法和基础理论,实现科学技术上的突破。

趋势四:数据科学和数据联盟的成立

未来,数据科学将成为一门专门的学科,被越来越多的人所认知。各大高校将设立专门的数据科学类专业,也会催生一批与之相关的新的就业岗位。与此同时,基于数据这个基础平台,也将建立起跨领域的数据共享平台,之后,数据共享将扩展到企业层面,并且成为未来产业的核心一环。

趋势五:数据泄露泛滥

未来几年数据泄露事件的增长率也许会达到100%,除非数据在其源头就能够得到安全保障。可以说,在未来,每个财富500强企业都会面临数据攻击,无论他们是否已经做好安全防范。而所有企业,无论规模大小,都需要重新审视今天的安全定义。

在财富500强企业中,超过50%将会设置首席信息安全官这一职位。企业需要从新的角度来确保自身以及客户数据,所有数据在创建之初便需要获得安全保障,而并非在数据保存的最后一个环节,仅仅加强后者的安全措施已被证明于事无补。

参考资料来源:人民网-大数据与政府改革创新

Ⅸ 大数据在教学管理中的运用

大数据在教学管理中的运用
随着大数据时代的崛起,云数据时代的来临,大数据给各行各业的发展模式和决策带来前所未有的革新与挑战,教育行业同样不可避免。大数据的发展给困境中的教育变革提出了新的挑战。进入大数据时代,依靠言传身教的古代精英式教学和注重快速实效的现代大众式教学正在有效结合,基于数据分析的共享式精准教学不再遥远,按需学习、因材施教将真正成为可能。
一、对“大数据”的理解《自然》杂志在2008年9月推出了名为“大数据”的封面专栏,讲述了数据在数学、物理、生物、工程及社会经济等多个学科扮演了愈加重要的角色。加里?金说:“这是一场革命,庞大的数据资源使得各个领域开始了量化进程,无论学术界、商界还是政府,所有领域都将开始这种进程。”大数据也称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、处理、并整理成为帮助企业更好经营决策的各种资讯,同时与大数据相关的数据存储、数据安全、数据分析等领域也都属于大数据范畴。简言之,从各种各样类型的数据中,快速获得有价值信息的能力,就是大数据技术。“大数据”具有数据体量巨大,数据类型繁多,价值密度低,处理速度快的特点。二、“大数据”对教学的影响 法家思想的集大成者韩非子也有“世异则事异,事异则备变”的观点,足见教育是需要根据现实变化的。 在教育领域中,“大数据”除体现传统数据的所有宏观功能外,还能收集分析详尽的微观个性化数据,大数据的优势立显。传统数据诠释宏观、整体的教育状况;大数据用于调整教育行为与实现个性化教育;传统数据来源于阶段性的,针对性的评估,其采样过程可能有系统误差;大数据来源于过程性的,以第三方、技术型的观察采样的方式误差较小。传统数据分析所需要的人才、专业技能以及设施设备都较为普通,易获得;大数据挖掘需要的人才,专业技能以及设施设备要求较高,并且从业者需要有创新意识与挖掘数据的灵感而不是按部就班者。 大数据带来新一轮教育信息化的浪潮已然随着硬件的高速革新和软件的高度智能无法抗拒地推到了我们面前。作为新时期的教育管理者,唯有掌握良好的“大数据”技术,转变教育思想,及时利用“大数据”服务学校管理、改革教育教学,提高办学质量。 三、大数据教学管理模式 随着时代的发展,科技的日新月异,以往的教学管理模式正在慢慢退出历史舞台。这种以现代信息技术为支撑,“大数据”为载体的新型管理模式极大地实现了教育资源的共享与充分利用,促进了工作效率的提升,转变了工作效能,让工作更加具有时效性,科学性,及时性。1、大数据管理的模型 正如2014年全国教育工作会议提出的,今后一个时期我国教育管理的目标是“加快推进教育治理体系和治理能力现代化”,我国的教育管理模式将发生质的变革,大数据管理模型应运而生。 大数据支撑的教育管理模型:以“主体、对象、资源、目标”为核心要素,建立多级连通共享的教育云,构建教育管理复杂系统,利用云技术处理教育云端大数据,为教育公共服务机构、教师和学生提供全天候多终端个性化需求的教育资源服务、专业发展服务和综合素质发展服务,提升教育资源配置的合理性和公平性,提升教育决策科学化水平。 在教育管理中,人的因素是重要的教育数据,是一切教育数据的来源。教育资源的配置,首先要进行科学合理的资源基本分类:人才资源、财物资源、知识资源;教育内容、教育理论、教育方法、教育经验等,是教育资源配置中的隐性资源,却是根本资源;技术资源是大数据教育管理的生产力资源,教育技术尤其是教育信息技术、大数据、云技术的应用,是管理主体满足教育服务需要,合理配置教育资源的应用型资源。 2、大数据管理的运行策略 教育大数据管理是一个长远的伟大工程,从当前的教育信息化建设水平和面临的挑战综合考虑,还有相当长的路程要走。我们需要在思想上、理论上和实践上全面推进,迫切需要制订正确而长远的行动路线图如又图所示。 这是三个层级的运行策略:底层是大数据教育管理的基础建设教育云的建设,各区域应遵循国家教育数据标准,建设分布式教育数据中心(云)资源库+数据库+数据关系逻辑的建构,为云端教育教学资源配置提供基础硬件支撑,进而建设三层智慧平台智慧校园、智慧学堂(课堂)和智慧终端(尤其是移动终端)应用平台建设,同样作为基础层级的是教育资源的大数据挖掘对教育过程所产生的数据进行统计、分析、建模等处理,为教育管理决策提供数据应用;位于高层的是教育大数据管理的操作系统,从公共服务到学生个体发展,利用大数据进行教育资源的公平配置和个性化供给,推进教育发展与改革,使人人享有优质恰当的教育资源,促进教育的优质可持续发展,推进教育品牌建设和创新提升,形成高效绿色的教育文化。 四、大数据教学管理的优越性 用数据说话、用数据决策、用数据管理、用数据创新的数据文化正在成形,大数据时代已经来临。顺应大数据时代的发展,教育变革已经进入了一个新的阶段,教育领域将迎来一场前所未有的大变革。
大数据的发展给困境中的教育变革提出了新的挑战。进入大数据时代,依靠言传身教的古代精英式教学和注重快速实效的现代大众式教学正在有效结合,基于数据分析的共享式精准教学不再遥远,按需学习、因材施教将真正成为可能。大数据带来的一系列变革,对新型创新人才的培养提出了更为迫切和现实的要求:日益强大的互联网、多媒体及概念软件、开源软件等为师生提供了更加自由、灵活的学习和探索空间,求知的视野被极大拓宽;日益频繁的师生活动及社会互动被大数据予以记录、分析和共享,教育环境的时空界限和信息隔阂得以打破,长期以来潜伏于数据之下的教育理论和规律将日益凸显和明朗,人才培养将更具灵活性和多样性;学习与生活、教育与社会不再被孤立,学生、学校与现实生活的体验更为接近,学生学习兴趣、学校办学动力将被大大激发