人工智能应用系统和发展
Ⅰ 浅谈人工智能技术的发展
人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能内的理论、容方法、技术及应用系统的一门新的技术科学。
人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。
人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”,也可能超过人的智能。
人工智能的定义可以分为两部分,即“ 人工”和“ 智能”。“人工”比较好理解,争议性也不大。有时我们会要考虑什么是人力所能及制造的,或者人自身的智能程度有没有高到可以创造人工智能的地步,等等。但总的来说,“人工系统”就是通常意义下的人工系统。
Ⅱ 人工智能的应用前景如何
据统计,2010年全球人工智能和机器学习领域获得的风险投资还不足5亿美元,而2017年这一领域的投资额已经超过108亿美元。2017年因此也被称为世界人工智能“元年”。
此外,据国家统计局最新数据,截至2017年底我国60周岁及以上人口有2.4亿,占总人口的17.3%,其中65周岁及以上人口1.6亿人,占总人口的11.4%。我国社会老龄化程度不断加深,劳动力红利将消失,而人工智能可以作为新的生产要素,弥补劳动力比例的不足。
Ⅲ 人工智能的发展概况
探讨人工智能,就要回答什么是智能的问题,综合各类定义,智能是一种知识与思维的合成,是人类认识世界和改造世界过程中的一种分析问题和解决问题的综合能力。对于人工智能,美国麻省理工学院的温斯顿教授提出“人工智能就是研究如何使计算机去做过去只有人才能做的智能工作”,斯坦福大学人工智能研究中心尼尔逊教授提出“人工智能是关于知识的学科――怎样表示知识以及怎样获得知识并使用知识的科学”。综合来看人工智能是相对人的智能而言的。其本质是对人思维的信息过程的模拟,是人的智能的物化。是研究、开发模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
(一)感知、处理和反馈构成人工智能的三个关键环节
人工智能经过信息采集、处理和反馈三个核心环节,综合表现出智能感知、精确性计算、智能反馈控制,即感知、思考、行动三个层层递进的特征。
智能感知:智能的产生首先需要收集到足够多的结构化数据去表述场景,因此智能感知是实现人工智能的第一步。智能感知技术的目的是使计算机能 “听”、会“看”,目前相应的计算机视觉技术和自然语言处理技术均已经初步成熟,开始商业化尝试。
智能处理:产生智能的第二步是使计算机具备足够的计算能力模拟人的某些思维过程和行为对分析收集来的数据信息做出判断,即对感知的信息进行自我学习、信息检索、逻辑判断、决策,并产生相应反映。具体的研究领域包括知识表达、自动推理、机器学习等,与精确性计算及编程技术、存储技术、网络技术等密切相关,是大数据技术发展的远期目标,目前该领域研究还处于实验室研究阶段,其中机器学习是人工智能领域目前热度最高,科研成果最密集的领域。
智能反馈:智能反馈控制将前期处理和判断的结果转译为肢体运动和媒介信息传输给人机交互界面或外部设备,实现人机、机物的信息交流和物理互动。智能反馈控制是人工智能最直观的表现形式,其表达能力展现了系统整体的智能水平。智能反馈控制领域与机械技术、控制技术和感知技术密切相关,整体表现为机器人学,目前机械技术受制于材料学发展缓慢,控制技术受益于工业机器人领域的积累相对成熟。
(二)深度学习是当前最热的人工智能研究领域
在学术界,实现人工智能有三种路线,一是基于逻辑方法进行功能模拟的符号主义路线,代表领域有专家系统和知识工程。二是基于统计方法的仿生模拟的连接主义路线,代表领域有机器学习和人脑仿生,三是行为主义,希望从进化的角度出发,基于智能控制系统的理论、方法和技术,研究拟人的智能控制行为。
当前,基于人工神经网络的深度学习技术是当前最热的研究领域,被Google,Facebook,IBM,网络,NEC以及其他互联网公司广泛使用,来进行图像和语音识别。人工神经网络从上个世纪80年代起步,科学家不断优化和推进算法的研究,同时受益于计算机技术的快速提升,目前科学家可以利用GPU(图形处理器)模拟超大型的人工神经网络;互联网业务的快速发展,为深度学习提供了上百万的样本进行训练,上述三个因素共同作用下使语音识别技术和图像识别技术能够达到90%以上的准确率。
(三)主要发达国家积极布局人工智能技术,抢占战略制高点。
各国政府高度重视人工智能相关产业的发展。自人工智能诞生至今,各国都纷纷加大对人工智能的科研投入,其中美国政府主要通过公共投资的方式牵引人工智能产业的发展,2013财年美国政府将22亿美元的国家预算投入到了先进制造业,投入方向之一便是“国家机器人计划”。
在技术方向上,美国将机器人技术列为警惕技术,主攻军用机器人技术,欧洲主攻服务和医疗机器人技术,日本主攻仿人和娱乐机器人。
现阶段的技术突破的重点一是云机器人技术,二是人脑仿生计算技术。美国、日本、巴西等国家均将云机器人作为机器人技术的未来研究方向之一。伴随着宽带网络设施的普及,云计算、大数据等技术的不断发展,未来机器人技术成本的进一步降低和机器人量产化目标实现,机器人通过网络获得数据或者进行处理将成为可能。目前国外相关研究的方向包括:建立开放系统机器人架构(包括通用的硬件与软件平台)、网络互联机器人系统平台、机器人网络平台的算法和图像处理系统开发、云机器人相关网络基础设施的研究等。
由于深度学习的成功,学术界进一步沿着连接主义的路线提升计算机对人脑的模拟程度。人脑仿生计算技术的发展,将使电脑可以模仿人类大脑的运算并能够实现学习和记忆,同时可以触类旁通并实现对知识的创造,这种具有创新能力的设计将会让电脑拥有自我学习和创造的能力,与人类大脑的功能几无二致。在2013年初的国情咨文中,美国总统奥巴马特别提到为人脑绘图的计划,宣布投入30亿美元在10年内绘制出“人类大脑图谱”,以了解人脑的运行机理。欧盟委员会也在2013年初宣布,石墨烯和人脑工程两大科技入选“未来新兴旗舰技术项目”,并为此设立专项研发计划,每项计划将在未来10年内分别获得10亿欧元的经费。美国IBM公司正在研究一种新型的仿生芯片,利用这些芯片,人类可以实现电脑模仿人脑的运算过程,预计最快到2019年可完全模拟出人类大脑。
(四)高科技企业普遍将人工智能视为下一代产业革命和互联网革命的技术引爆点进行投资,加快产业化进程。
谷歌在2013年完成了8 家机器人相关企业的收购,在机器学习方面也大肆搜罗企业和人才,收购了DeepMind和计算机视觉领军企业Andrew Zisserman,又聘请DARPA原负责人 Regina Dugan负责颠覆性创新项目的研究,并安排构建Google基础算法和开发平台的著名计算机科学家Jeff Dean转战深度学习领域。苹果2014 年在自动化上的资本支出预算高达110 亿美元。苹果手机中采用的Siri智能助理脱胎于美国先进研究项目局(DARPA)投资1.5亿美元,历时5年的CALO( Cognitive Assistant that Learns and Organizes)项目,是美国首个得到大规模产业化应用的人工智能项目。Amazon计划在2015 年能够使用自己的机器人飞行器进行快递服务。韩国和日本的各家公司也纷纷把机器人技术移植到制造业新领域并尝试进入服务业
(五)人工智能的实际应用
人工智能概念从1956年提出,到今天初步具备产品化的可能性经历了58年的演进,各个重要组成部分的研究进度和产品化水平各不相同。人工智能产品的发展是一个渐进性的过程,是一个从单一功能设备向通用设备,从单一场景到复杂场景,从简单行为到复杂行为的发展过程,具有多种表现形式。
人工智能产品近期仍将作为辅助人类工作的工具出现,多表现为传统设备的升级版本,如智能/无人驾驶汽车,扫地机器人,医疗机器人等。汽车、吸尘器等产品和人类已经有成熟的物理交互模式,人工智能技术通过赋予上述产品一定的机器智能来提升其自动工作的能力。但未来将会出现在各类环境中模拟人类思维模式去执行各类任务的真正意义的智能机器人,这类产品没有成熟的人机接口可以借鉴,需要从机械、控制、交互各个层面进行全新研发。
希望我的回答可以帮到您哦
Ⅳ 人工智能在生活行业的应用与展望
1、深度学习
深度学习作为人工智能领域的一个重要应用领域。说到深度学习,大家第一个想到的肯定是AlphaGo,通过一次又一次的学习、更新算法,最终在人机大战中打败围棋大师。对于一个智能系统来讲,深度学习的能力大小,决定着它在多大程度上能达到用户对它的期待。
2、计算机视觉
计算机视觉是指计算机从图像中识别出物体、场景和活动的能力。计算机视觉有着广泛的细分应用,其中包括,医疗领域成像分析、人脸识别、公关安全、安防监控等等。
3、语音识别
语音识别,是把语音转化为文字,并对其进行识别、认知和处理。语音识别的主要应用包括电话外呼、医疗领域听写、语音书写、电脑系统声控、电话客服等。
4、虚拟个人助理
苹果手机的Siri,以及小米手机上的小爱,都算是虚拟个人助理的应用。
5、自然语言处理
自然语言处理(NLP),像计算机视觉技术一样,将各种有助于实现目标的多种技术进行了融合,实现人机间自然语言的通信。
6、智能机器人
智能机器人在生活中随处可见,扫地机器人、陪伴机器人……这些机器人不管是跟人语音聊天,还是自主定位导航行走、安防监控等,都离不开人工智能技术的支持。
7、引擎推荐
淘宝、京东等商城,以及36氪等资讯网站,会根据你之前浏览过的商品、页面、搜索过的关键字推送给你一些相关的产品、或网站内容。这其实就是引擎推荐技术的一种表现。
(4)人工智能应用系统和发展扩展阅读:
构建一个网络并且随机初始化所有连接的权重;将大量的数据情况输出到这个网络中;网络处理这些动作并且进行学习;如果这个动作符合指定的动作,将会增强权重,如果不符合,将会降低权重;系统通过如上过程调整权重;在成千上万次的学习之后,超过人类的表现。
对声音进行处理,使用移动函数对声音进行分帧;声音被分帧后,变为很多波形,需要将波形做声学体征提取;声音特征提取之后,声音就变成了一个矩阵。然后通过音素组合成单词;
Ⅳ 人工智能发展现状和趋势如何
人工智能的发展现状处于成长期,由于相关人才的数量比较少,人工智能的人才市场处于空缺,出现了供不应求的状况。加之国家发布相关政策促进人工智能的发展;一些省份也比较重视人工智能的发展
Ⅵ 人工智能的发展方向
一是重点培育和发展智能网联汽车、智能服务机器人、智能无人机、医疗影像辅助诊断系统、视频图像身份识别系统、智能语音交互系统、智能翻译系统、智能家居产品等智能化产品,推动智能产品在经济社会的集成应用。
以上智能化产品已有较好的技术、产业基础,部分细分领域的产品已经走在了国际前列,在国家政策引导下有望实现规模化发展,形成由点到面的突破,并带动人工智能技术在行业中的深入应用。
二是重点发展智能传感器、神经网络芯片、开源开放平台等关键环节,夯实人工智能产业发展的软硬件基础。
以上这些产品或平台市场竞争力不强,是产业链上的薄弱环节,对产业发展可能形成制约,亟待加快创新发展,夯实基础,补齐短板。
三是深化发展智能制造,鼓励新一代人工智能技术在工业领域各环节的探索应用,提升智能制造关键技术装备创新能力,培育推广智能制造新模式。
制造业是人工智能最先落地的行业之一,“中国制造2025”提出“以推进智能制造为主攻方向”的明确要求。近年来,在党中央国务院的高度重视下,我国制造业发展已取得积极进展,特别是在加快发展智能制造,推动制造业智能化升级改造方面开展大量工作。《行动计划》与“中国制造2025”紧密对接,进一步突出了需要加快应用人工智能技术进行改造升级的具体任务,将为智能制造的深化发展提供有力支撑。
四是构建行业训练资源库、标准测试及知识产权服务平台、智能化网络基础设施、网络安全保障等产业公共支撑体系,完善人工智能发展环境。
目前,我国人工智能发展的痛点问题之一就是缺少有效的行业资源训练库等公共服务支撑体系,业界普遍反映已经影响了人工智能技术发展及在行业中的应用。《行动计划》注意到了这一关键问题,加大对产业公共服务平台的支持,将形成有效引导,不断完善产业发展环境。