深入浅出为你解析关于大数据的所有事情
❶ 你对大数据有哪些认识
"大数据"是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。从数据的类别上看,"大数据"指的是无法使用传统流程或工具处理或分析的信息。它定义了那些超出正常处理范围和大小、迫使用户采用非传统处理方法的数据集。 亚马逊网络服务(AWS)、大数据科学家JohnRauser提到一个简单的定义:大数据就是任何超过了一台计算机处理能力的庞大数据量。 研发小组对大数据的定义:"大数据是最大的宣传技术、是最时髦的技术,当这种现象出现时,定义就变得很混乱。" Kelly说:"大数据是可能不包含所有的信息,但我觉得大部分是正确的。对大数据的一部分认知在于,它是如此之大,分析它需要多个工作负载,这是AWS的定义。当你的技术达到极限时,也就是数据的极限"。 大数据不是关于如何定义,最重要的是如何使用。最大的挑战在于哪些技术能更好的使用数据以及大数据的应用情况如何。这与传统的数据库相比,开源的大数据分析工具的如Hadoop的崛起,这些非结构化的数据服务的价值在哪里。
❷ 对于现在的大数据时代你怎么看聊聊
现在的时代确实是发点特别快,并且我们的网络时代是在不断地发展的,而且4G的时代就要结束了5G的时代即将到来。
❸ 大数据起源,给你解析到底什么是大数据
大数据,英文名 data。因为传播已经成为习惯,我们并没有过多的去思考为什么用big data去描述,但是现在我们仔细回味一下,会发现大数据这个大为什么不用large为什么不用海量vast呢?归根结底我们可能就需要从语法上,来分析一下,它们三个之间的区别。big形容大小。更多的时候,是一种比较行为上的大,是种相对来说的感觉,而large和vast更多的时候形容的是的是一种形体上的巨大。
那么现在来推敲一下big data这个词,大数据这个大其实是一种相对的说法是相对于传统的数据体量来说的,过去任何时候的数据相对于现在来说都显得太过于渺小,而现在我们所说的大数据是一种量变最后达到了质变的概念。
数据这个词最早在媒体上风靡应该是2007年左右。往上追溯应该就是05年谷歌参加有美国官方举办的一个机器翻译大赛,最终由于使用了海量的相关数据而夺得第一,在那之后大数据这个概念渐渐的被业内人士所传播。那么到底什么是大数据呢?
大数据顾名思义,最表象的特征就是数据量够大。但是仅仅数据量够大,并不能构成大数据整体的含义。如果是海量杂乱无章,互之间没有关联的数据,即便再怎么定义,它也算不上是大数据。就譬如一个人体内的基因图谱,详细的基因图谱数据如果记录出来是一个很大体量的,但是没有意义。
大数据而且还有个概念,那就是多维度。在十年前,如果说国内哪一家公司最有资格说大数据的,那无疑是网络了。作为一个独占13亿用户专属的搜索公司来说,网络对于用户画像的记录,无疑是多维的。网络搜索,至今记录了无数用户每天在互联网上搜索的问题,或者说知识。在时间维度上用户对某些词汇搜索的频次高低这些都是数据。它可以通过对注册用户的甄别就可以知道搜索这个词汇或者是这个问题的用户是男生还是女生?年龄分布是是小孩、青年抑或是一个中年大叔?再到后来个人电脑开始普及,通过记录ip等信息,根据ip搜索的网络的问题的分类,可以判断中国各个区域,是南方富裕一点,还是北方富裕点?是江苏人更爱吃,还是闽南人更喜欢谈论吃?网络完全可以根据自己的数据生成得到国内各种关于此类的数据,普查之后所能得到的答案这就是因为网络所具有的数据是一个多维度的数据。他的数据收集过程,是一个长期的持续性的工作。
除了网络之外,腾讯的qq确实每年都会有一个关于qq的城市报告。它会根据qq的用户数据,甚至于至于活跃地点。在一个大的范围内青年QQ用户的占比,最终可以得到中国城市年轻度排行榜。可以根据这些数据判断,哪一个城市是,年轻人毕业之后最愿意去的。可以判断哪一个城市的,年轻人毕业之后,是回归率最高的。也可以判断哪一个城市的人才流失率更低,更容易留住外来人才。这些都是大数据多维度的应用。
大数据还有一个非常重要的特点,那就是全面性。经常在某些大型活动之前我们都会遇到。某些公司对于这件事情,会做出预测。然后最终的结果让我们大失所望。预测无疑是需要基于数据基础的预测,如果这个数据不够全面的话,最终的预测结果肯定相差甚大。
关于数据全面性有一个最经典的案例这是12年美国大选大选事件。一个名叫斯威尔的年轻人,利用大数据预测。成功预测出了51个州的选举果,要知道这在之前是从来没有发生过的事情。美国大选在之前就一直有专业的预测机构做预测,但是就连这种长期做数据,分析的公司都从来没有如此成功的预测过。那是因为斯威尔将网上所有关于选举的数据,包括新闻稿,以及facebook和推特上面人们关于选举的言论,所有的数据都做了甄选处理。这份数据反映的是网民全面几乎没有遗漏的想法,最终得到了某种程度上来说,比较具有完备性的数据,所以能够如此成功的预测13年美国大选的结果。
❹ 你是如何理解时下流行的大数据的
大数据真正有意思的是数据变得在线了,这个恰恰是互联网的特点。非互联网时期的产品,功能一定是它的价值,今天互联网的产品,数据一定是它的价值。
❺ 关于大数据的几个问题!
大数据就是大量数据了,比如淘宝网存储的用户信息,用户购买记录等,这个数据量达到PB级了。
大数据带来的优势不好说啊,见过这样的大数据才有感觉。
大数据应用:最直观还是淘宝、京东这些,有没有注意到你浏览过、买过一些产品之后,有些广告推送就会给推送相关产品,这就是大数据的应用,通过分析你的购买记录,分析你可能感兴趣的商品,比如你买过婴儿奶粉,那你对纸尿裤、湿纸巾可能就感兴趣,这些都是后台大数据分析平台干的事情。
同上。
理解不够深刻,觉得可做的事情挺多,尤其是政府,大数据很有用,比如城市交通状况的预测、停车引导等等,比如犯罪嫌疑人的追踪(这个需要多方面的技术配合)。
❻ 什么是大数据,大数据为什么重要,如何应用大数据读《驾驭大数据》
去年出版的《大数据》(涂子沛著)是从数据治国的角度,深入浅出的叙述了美国政府的管理之道,细密入微的阐释了黄仁宇先生”资本主义数目式管理“的精髓。最近人民邮电出版社又组织翻译出版了美国Bill Franks的《驾驭大数据》一书。该书的整体思路,简单来说,就是叙述了一个”数据收集-知识形成-智慧行动“的过程,不仅回答了”what“,也指明了”how“,提供了具体的技术、流程、方法,甚至团队建设,文化创新。作者首先在第一章分析了大数据的兴起,介绍了大数据的概念、内容,价值,并分析了大数据的来源,也探讨了在汽车保险、电力、零售行业的应用场景;在第二章介绍了驾驭大数据的技术、流程、方法,第三部分则介绍了驾驭大数据的能力框架,包括了如何进行优质分析,如何成为优秀的分析师,如何打造高绩效团队,最后则提出了企业创新文化的重要意义。整本书高屋建瓴、内容恣意汪洋、酣畅淋漓,结构上百川归海,一气呵成,总的来说,体系完备、内容繁丰、见识独具、实用性强,非常值得推荐,是不可多得的好书!大数据重要以及不重要的一面与大多数人的想当然的看法不同,作者认为“大数据”中的”大”和“数据”都不重要,重要的是数据能带来的价值以及如何驾驭这些大数据,甚至与传统的结构化数据和教科书上的认知不同,“大数据可能是凌乱而丑陋的”并且大数据也会带来“被大数据压得不看重负,从而停止不前”和大数据处理“成本增长速度会让企业措手不及”的风险,所以,作者才认为驾驭大数据,做到游刃有余、从容自若、实现“被管理的创新”最为重要。在处理数据时,作者指出“很多大数据其实并不重要”,企业要做好大数据工作,关键是能做到如何沙里淘金,并与各种数据进行结合或混搭,进而发现其中的价值。这也是作者一再强调的“新数据每一次都会胜过新的工具和方法”的原因所在。网络数据与电子商务对顾客行为的挖掘早已不是什么热门概念,然而作者认为从更深层次的角度看,下一步客户意图和决策过程的分析才是具有价值的金矿,即“关于购买商品的想法以及影响他们购买决策的关键因素是什么”。针对电子商务这一顾客行为的数据挖掘,作者不是泛泛而谈,而是独具慧眼的从购买路径、偏好、行为、反馈、流失模型、响应模型、顾客分类、评估广告效果等方面提供了非常有吸引力的建议。我认为,《驾驭大数据》的作者提出的网络数据作为大数据的“原始数据”其实也蕴含着另外一重意蕴,即只有电子商务才具备与顾客进行深入的互动,也才具有了收集这些数据的条件,从这点看,直接面向终端的企业如果不电子商务化,谈论大数据不是一件很可笑的事?当然这种用户购买路径的行为分析,也不是新鲜的事,在昂德希尔《顾客为什么购买:新时代的零售业圣经》一书中披露了商场雇佣大量顾问,暗中尾随顾客,用摄影机或充满密语的卡片,完整真实的记录顾客从进入到离开商场的每一个动作,并进行深入的总结和分析,进而改进货物的陈列位置、广告的用词和放置场所等,都与电子商务时代的客户行为挖掘具有异曲同工之妙,当然电子商务时代,数据分析的成本更加低廉,也更加容易获取那些非直接观察可以收集的数据(如信用记录)。一些有价值的应用场景大数据的价值需要借助于一些具体的应用模式和场景才能得到集中体现,电子商务是一个案例,同时,作者也提到了车载信息“最初作为一种工具出现的,它可以帮助车主和公司获得更好的、更有效的车辆保险”,然而它所能够提供的时速、路段、开始和结束时间等信息,对改善城市交通拥堵具有意料之外的价值。基于GPS技术和手机应用所提供的时间和位置的数据也会提供主动的、及时的推送客户关怀信息,有利于改善客户关系和创造商业机会,也可以利用它进行共同目的和兴趣的社交,这些都会带来一种令人惊奇的业务创新。在视频游戏、电信话费清单上,作者也提出了十分有价值的洞见。技术、流程、方法、组织、人、文化作者是Teradata的首席分析师,绝非是文献学专家和徒有虚名之辈,他在书中也介绍了如何利用海量并行架构(MPP),云计算、网格计算、MapRece等时下炙手可热的技术从大数据中披沙沥金,驾驭大数据。同时,作者一直在提醒我们,数据只是源,“思想才是分析之父”,“有价值和影响力的分析才是优质分析”,优质分析要符合G(Guided指导性)R(Relevant相关性)A(Explainable可行性)T(Timely及时向)原则,并且优质的分析要能提供答案、提供用户需要的东西,要能提供新的解决方案,对实际行动有指导意义,从这个角度看,它区别于报表那种标准和固定的数据呈现模式,借助于大数据分析,用户能够把握现状、预测趋势,这样才能驾驭未来。作为一个大数据的行动者和实干家,作者也结合自己的工作经验,对于如何成为优秀的分析师,给出了他的答案,那就是学历、数学和编程等技能“它们仅仅是起点而已”,优秀分析专家身上更重要的才能是“承诺、创造力、商业头脑、演讲能力和沟通技巧、直觉”,这种人一将难求,它需要分析师长期的工作经验积累,从这点看,数据分析“不能只把自己当成科学家,业内最好的分析专家毫无疑问也是艺术家”。企业的大数据探索之旅,并非一片坦途,也会充满了各种艰险,这就需要企业具有创新性的文化氛围,容忍冒险和犯错,并鼓励尝试,作者也切中肯綮的提出“关注人,而不是工具”,“打破思维定势,形成连锁反应,统一行动目标”的创新之路,供读者思考和借鉴。时异而世移,我认为,在当今社会,企业直面社会的剧烈变化,在管理工作中依赖小规模的“点子”“好主意”的传统做法已经难以应对市场的激烈竞争,企业需要从那些来自于现场、来源于客户、来源于多个时空的全方位的立体信息中找到利润的宝藏,才能获得持续增长的动力,从这个意义上看,驾驭大数据是企业驾驭未来的必经之路。
❼ 到底什么是大数据,你是真的了解大数据
大数据技术是以数据为本质的新一代革命性的信息技术,在数据挖潜过程中,能够带动理念、模式、技术及应用实践的创新。本书系统性地介绍了大数据的概念、发展历程、市场价值、大数据相关技术,以及大数据对中国信息化建设、智慧城市、广告、媒体等领域的核心支撑作用,并对对数据科学理论做了初步探索。
❽ 如何解析大数据
大数据分析的五个基本方面
(预测性分析能力)
数据挖掘可以让分析员更好的理解数据,而预测性分析可以让分析员根据可视化分析和数据挖掘的结果做出一些预测性的判断。
(数据质量和数据管理)
数据质量和数据管理是一些管理方面的最佳实践。通过标准化的流程和工具对数据进行处理可以保证一个预先定义好的高质量的分析结果。 AnalyticVisualizations(可视化分析)
不管是对数据分析专家还是普通用户,数据可视化是数据分析工具最基本的要求。可视化可以直观的展示数据,让数据自己说话,让观众听到结果。 SemanticEngines(语义引擎)
我们知道由于非结构化数据的多样性带来了数据分析的新的挑战,我们需要一系列的工具去解析,提取,分析数据。语义引擎需要被设计成能够从“文档”中智能提取信息。
DataMiningAlgorithms(数据挖掘算法)
可视化是给人看的,数据挖掘就是给机器看的。集群、分割、孤立点分析还有其他的算法让我们深入数据内部,挖掘价值。这些算法不仅要处理大数据的量,也要处理大数据的速度。
假如大数据真的是下一个重要的技术革新的话,我们最好把精力关注在大数据能给我们带来的好处,而不仅仅是挑战。
2
大数据处理
大数据处理数据时代理念的三大转变:要全体不要抽样,要效率不要绝对精确,
要相关不要因果。具体的大数据处理方法其实有很多,但是根据长时间的实践,
笔者总结了一个基本的大数据处理流程,并且这个流程应该能够对大家理顺大数据的处理有所帮助。整个处理流程可以概括为四步,分别是采集、导入和预处理、统计和分析,以及挖掘。
3
采集
大数据的采集是指利用多个数据库来接收发自客户端的数据,并且用户可以通过这些数据库来进行简单的查询和处理工作。比如,电商会使用传统的关系型数据库MySQL和Oracle等来存储每一笔事务数据,除此之外,Redis和MongoDB这样的NoSQL数据库也常用于数据的采集。
在大数据的采集过程中,其主要特点和挑战是并发数高,因为同时有可能会有成千上万的用户来进行访问和操作,比如火车票售票网站和淘宝,它们并发的访问量在峰值时达到上百万,所以需要在采集端部署大量数据库才能支撑。并且如何在这些数据库之间进行负载均衡和分片的确是需要深入的思考和设计。
4
统计/分析
统计与分析主要利用分布式数据库,或者分布式计算集群来对存储于其内的海量数据进行普通的分析和分类汇总等,以满足大多数常见的分析需求,在这方面,
一些实时性需求会用到EMC的GreenPlum、Oracle的Exadata,以及基MySQL
的列式存储Infobright等,而一些批处理,或者基于半结构化数据的需求可以使用Hadoop。统计与分析这部分的主要特点和挑战是分析涉及的数据量大,其对系统资源,特别是I/O会有极大的占用。
5
导入/预处理
虽然采集端本身会有很多数据库,但是如果要对这些海量数据进行有效的分析,
还是应该将这些来自前端的数据导入到一个集中的大型分布式数据库,或者分布式存储集群,并且可以在导入基础上做一些简单的清洗和预处理工作。也有一些用户会在导入时使用来自Twitter的Storm来对数据进行流式计算,来满足部分业务的实时计算需求。导入与预处理过程的特点和挑战主要是导入的数据量大,
每秒钟的导入量经常会达到百兆,甚至千兆级别。
6
挖掘
与前面统计和分析过程不同的是,数据挖掘一般没有什么预先设定好的主题,
主要是在现有数据上面进行基于各种算法的计算,从而起到预测的效果,从而实现一些高级别数据分析的需求。比较典型算法有用于聚类的K-Means、用于统计学习的SVM和用于分类的Naive Bayes,主要使用的工具有HadoopMahout
等。该过程的特点和挑战主要是用于挖掘的算法很复杂,并且计算涉及的数据量和计算量都很大,还有,常用数据挖掘算法都以单线程为主。
❾ 什么是大数据,大数据为什么重要,如何应用大数据
“大数据”简单理解为:
"大数据"是一个体量特别大,数据类别特别大的数据集,并且这样的数据集无法用传统数据库工具对其内容进行抓取、管理和处理。大数据是一个抽象的概念,对当前无论是企业还是政府、高校等单位面临的数据无法存储、无法计算的状态。大数据,在于海量,单机无法快速处理,需要通过垂直扩展,即大内存高效能,水平扩展,即大磁盘大集群等来进行处理。
大数据为什么重要:
获取大数据后,用这些数据做:数据采集、数据存储、数据清洗、数据分析、数据可视化
大数据技术对这些含有意义的数据进行专业化处理,对企业而言,大数据可提高工作效率,降低企业成本,精准营销带来更多客户。对政府而言,可以利用大数进行统筹分析、提高管理效率、管理抓获犯罪分子等。对个人而言,可以利用大数据更了解自己等。
如何应用大数据:
大数据的应用对象可以简单的分为给人类提供辅助服务,以及为智能体提供决策服务。
大数据不仅包括企业内部应用系统的数据分析,还包括与行业、产业的深度融合。具体场景包括:互联网行业、政府行业、金融行业、传统企业中的地产、医疗、能源、制造、电信行业等等。通俗地讲“大数据就像互联网+,可以应用在各行各业",如电信、金融、教育、医疗、军事、电子商务甚至政府决策等。
❿ 解析大数据的定义与特征
内容来自用户制:维旺(精选)
解析大数据的定义与特征
大数据研究家维克托·迈尔-舍恩伯格曾经zhuan说过:世界的本质是shu数据。属在他看来,认识大数据之前,世界原本就是一个数据时代;认识大数据之后,世界不可避免地分为大数据时代、小数据时代。
随着社会不断发展的脚步,各类数据不断累积,如果说小数据时代的各类分析调研更多的是靠样本采集,那么现在,不管从数据的维度还是层次来看,数据体量的累积已经到了一个非常夯实的阶段。