大数据通俗理解
『壹』 大数据时代通俗解释
进入2012年,大数据(big data)一词越来越多地被提及,人们用它来描述和定义信息爆炸时代产生的海量数据时代来临据,并命名与之相关的技术发展与创新。
现在的社会是一个高速发展的社会,科技发达,信息流通,人们之间的交流越来越密切,生活也越来越方便,大数据就是这个高科技时代的产物。
随着云时代的来临,大数据(Big data)也吸引了越来越多的关注。大数据(Big data)通常用来形容一个公司创造的大量非结构化和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像MapRece一样的框架来向数十、数百或甚至数千的电脑分配工作。
在现今的社会,大数据的应用越来越彰显他的优势,它占领的领域也越来越大,电子商务、O2O、物流配送等,各种利用大数据进行发展的领域正在协助企业不断地发展新业务,创新运营模式。有了大数据这个概念,对于消费者行为的判断,产品销售量的预测,精确的营销范围以及存货的补给已经得到全面的改善与优化。
"大数据"在互联网行业指的是这样一种现象:互联网公司在日常运营中生成、累积的用户网络行为数据。这些数据的规模是如此庞大,以至于不能用G或T来衡量。
『贰』 什么是"大数据"具体意思是什么用通俗易懂的解释在线等,必采!
各方面多角度对目标的影响统计
『叁』 什么是大数据,通俗的讲
有人说大数据技术是第四次技术革命,这个说法其实不为过。
很多人只是听过大数据这个词或者是简单知道它是什么,那么它是什么呢,在这里就通俗点来说一下个人对大数据的理解。
大数据,很明显从字面上理解就是大量的数据,海量的数据。大,意思就是数据的量级很大,不上TB都不好意思说是大数据。数据,狭义上理解就是12345那么些数据,毕竟计算机底层是二进制来存的,那么在大数据领域,数据就不仅仅包括数字这些,它可以是所有格式的东西,比如日志,音频视频,文件等等。
所以,大数据从字面上理解就是海量的数据,技术上它包括这些海量数据的采集,过滤,清洗,存储,处理,查看等等部分,每一个部分包括一些大数据的相关技术框架来支持。
举个例子,淘宝双十一的总交易额的显示,后面就是大数据技术的支持,全国那么多淘宝用户的交易记录汇聚到一起,数据量很大,而且要做到实时的展现,就需要强有力的大数据技术来处理了。
数据量一大,那么得找地方来存,一个服务器硬盘可以挂多少,肯定满足不了这么大的数据量存储啊,所以,分布式的存储系统应运而生,那就是HDFS分布式文件系统。简单的说,就是把这么大的数据分开存在甚至几百甚至几千台服务器上,那么管理他们的系统就是HDFS文件系统,也是大数据技术的最基本的组件。
有地方存了,需要一些分布式的数据库来管理查询啊,那就有了Hbase等,还需要一些组件来计算分析这些数据啊,maprece是最基本的计算框架,其他的计算框架Spark和Storm可以完成实时的处理,其中HDFS和MapRece组成了Hadoop1.
总之,一切都是数据。我们的历史,是不是都是大量的数据保存下来的,现在我们也是大数据的生活,天天有没有接到骚扰电话还知道你姓什么,你查话费什么的从几亿人的数据中查到你的信息,大数据生活。未来,大数据将更深刻的渗透到生活中。
『肆』 大数据是什么通俗易懂一点 昨天听别人说 自己蒙了
就是用电脑收集所有数据,然后分析,预测
『伍』 怎样通俗解释大数据时代的意义
云计算,可以理解为一种工具,比如你有一份100G的文件,没办法一次性读进一台电脑的内存,但是云计算是一种可以把N台电脑连接在一起的东西,就可以通过强大的集群性能处理非常大的文件,比如一个云可能有3000台机器,可能有1W台机器,它的计算能力就能得到极大提升,目前主要就是hadoop家族的东西。而大数据,字面意义就是很大的数据,但在应用中主要是数据挖掘等,大量的数据本身没有意义,而通过一些方法(比如数据挖掘的算法)对大量数据进行分析处理后,能通过计算机发现大量数据中有用的、有价值的东西,把大量数据转化为价值,这就是大数据
『陆』 什么是大数据,看完这篇就明白了
什么是大数据
如果从字面上解释的话,大家很容易想到的可能就是大量的数据,海量的数据。这样的解释确实通俗易懂,但如果用专业知识来描述的话,就是指数据集的大小远远超过了现有普通数据库软件和工具的处理能力的数据。
大数据的特点
海量化
这里指的数据量是从TB到PB级别。在这里顺带给大家科普一下这是什么概念。
MB,全称MByte,计算机中的一种储存单位,含义是“兆字节”。
1MB可储存1024×1024=1048576字节(Byte)。
字节(Byte)是存储容量基本单位,1字节(1Byte)由8个二进制位组成。
位(bit)是计算机存储信息的最小单位,二进制的一个“0”或一个“1”叫一位。
通俗来讲,1MB约等于一张网络通用图片(非高清)的大小。
1GB=1024MB,约等于下载一部电影(非高清)的大小。
1TB=1024GB,约等于一个固态硬盘的容量大小,能存放一个不间断的监控摄像头录像(200MB/个)长达半年左右。
1PB=1024TB,容量相当大,应用于大数据存储设备,如服务器等。
1EB=1024PB,目前还没有单个存储器达到这个容量。
多样化
大数据含有的数据类型复杂,超过80%的数据是非结构化的。而数据类型又分成结构化数据,非结构化数据,半结构化数据。这里再对三种数据类型做一个分类科普。
①结构化数据
结构化的数据是指可以使用关系型数据库(例如:MySQL,Oracle,DB2)表示和存储,表现为二维形式的数据。一般特点是:数据以行为单位,一行数据表示一个实体的信息,每一行数据的属性是相同的。所以,结构化的数据的存储和排列是很有规律的,这对查询和修改等操作很有帮助。
但是,它的扩展性不好。比如,如果字段不固定,利用关系型数据库也是比较困难的,有人会说,需要的时候加个字段就可以了,这样的方法也不是不可以,但在实际运用中每次都进行反复的表结构变更是非常痛苦的,这也容易导致后台接口从数据库取数据出错。你也可以预先设定大量的预备字段,但这样的话,时间一长很容易弄不清除字段和数据的对应状态,即哪个字段保存有哪些数据。
②半结构化数据
半结构化数据是结构化数据的一种形式,它并不符合关系型数据库或其他数据表的形式关联起来的数据模型结构,但包含相关标记,用来分隔语义元素以及对记录和字段进行分层。因此,它也被称为自描述的结构。半结构化数据,属于同一类实体可以有不同的属性,即使他们被组合在一起,这些属性的顺序并不重要。常见的半结构数据有XML和JSON。
③非结构化数据
非结构化数据是数据结构不规则或不完整,没有预定义的数据模型,不方便用数据库二维逻辑表来表现的数据。包括所有格式的办公文档、文本、图片、各类报表、图像和音频/视频信息等等。非结构化数据其格式非常多样,标准也是多样性的,而且在技术上非结构化信息比结构化信息更难标准化和理解。所以存储、检索、发布以及利用需要更加智能化的IT技术,比如海量存储、智能检索、知识挖掘、内容保护、信息的增值开发利用等。
快速化
随着物联网、电子商务、社会化网络的快速发展,全球大数据储量迅猛增长,成为大数据产业发展的基础。根据国际数据公司(IDC)的监测数据显示,2013年全球大数据储量为4.3ZB(相当于47.24亿个1TB容量的移动硬盘),2014年和2015年全球大数据储量分别为6.6ZB和8.6ZB。近几年全球大数据储量的增速每年都保持在40%,2016年甚至达到了87.21%的增长率。2016年和2017年全球大数据储量分别为16.1ZB和21.6ZB,2018年全球大数据储量达到33.0ZB。预测未来几年,全球大数据储量规模也都会保持40%左右的增长率。在数据储量不断增长和应用驱动创新的推动下,大数据产业将会不断丰富商业模式,构建出多层多样的市场格局,具有广阔的发展空间。
核心价值
大数据的核心价值,从业务角度出发,主要有如下的3点:
a.数据辅助决策:为企业提供基础的数据统计报表分析服务。分析师能够轻易获取数据产出分析报告指导产品和运营,产品经理能够通过统计数据完善产品功能和改善用户体验,运营人员可以通过数据发现运营问题并确定运营的策略和方向,管理层可以通过数据掌握公司业务运营状况,从而进行一些战略决策;
b.数据驱动业务:通过数据产品、数据挖掘模型实现企业产品和运营的智能化,从而极大的提高企业的整体效能产出。最常见的应用领域有基于个性化推荐技术的精准营销服务、广告服务、基于模型算法的风控反欺诈服务征信服务,等等。
c.数据对外变现:通过对数据进行精心的包装,对外提供数据服务,从而获得现金收入。市面上比较常见有各大数据公司利用自己掌握的大数据,提供风控查询、验证、反欺诈服务,提供导客、导流、精准营销服务,提供数据开放平台服务,等等。
大数据能做什么?
1、海量数据快速查询(离线)
能够在海量数据的基础上进行快速计算,这里的“快速”是与传统计算方案对比。海量数据背景下,使用传统方案计算可能需要一星期时间。使用大数据 技术计算只需要30分钟。
2.海量数据实时计算(实时)
在海量数据的背景下,对于实时生成的最新数据,需要立刻、马上传递到大数据环境,并立刻、马上进行相关业务指标的分析,并把分析完的结果立刻、马上展示给用户或者领导。
3.海量数据的存储(数据量大,单个大文件)
大数据能够存储海量数据,大数据时代数据量巨大,1TB=1024*1G 约26万首歌(一首歌4M),1PB=1024 * 1024 * 1G约2.68亿首歌(一首歌4M)
大数据能够存储单个大文件。目前市面上最大的单个硬盘大小约为10T左右。若有一个文件20T,将 无法存储。大数据可以存储单个20T文件,甚至更大。
4.数据挖掘(挖掘以前没有发现的有价值的数据)
挖掘前所未有的新的价值点。原始企业内数据无法计算出的结果,使用大数据能够计算出。
挖掘(算法)有价值的数据。在海量数据背景下,使用数据挖掘算法,挖掘有价值的指标(不使用这些算法无法算出)
大数据行业的应用?
1.常见领域
2.智慧城市
3.电信大数据
4.电商大数据
大数据行业前景(国家政策)?
2014年7月23日,国务院常务会议审议通过《企业信息公示暂行条例(草案)》
2015年6月19日,国家大大、总理同时就“大数据”发表意见:《国务院办公厅关于运用大数据加强对市场主体服务和监管的若干意见》
2015年8月31日,国务院印发《促进大数据发展行动纲要》。国发〔2015〕50号
2016年12月18日,工业和信息化部关于印发《大数据产业发展规划》
2018年1月23日。中央全面深化改革领导小组会议审议通过了《科学数据管理办法》
2018年7月1日,国务院办公厅印发《关于运用大数据加强对市场主体服务和监管的若干意见》
2019年政府工作报告中总理指出“深化大数据、人工智能等研发应用,培育新一代信息技术、高端装备、生物医药、新能源汽车、新材料等新兴产业集群,壮大数字经济。”
总结
我国著名的电商之父,阿里巴巴创始人马云先生曾说过,未来10年,乃至20年,将是人工智能的时代,大数据的时代。对于现在正在学习大数据的我们来说,未来对于我们更是充满了各种机遇与挑战。
python学习网,大量的免费python视频教程,欢迎在线学习!
『柒』 有没有大神能用通俗的语言讲一下什么是大数据
大数据其实就是把很多的一个小的数据集合在一起,然后再通过一个获取之后进行一个储版存,并再权次管理和分析,然后通过这样的一个行为就可以判断出来我们很多用户自己喜欢的是什么,偏向于什么样的东西,这些都是可以通过这样的东西去分析的。
『捌』 大数据到底是啥在哪里(通俗解释)
大数据(Big
data)
是一个抽象的概念,是一个体量特别大,数据类别特别大的数据集版,并且这样的数据集无法权用传统数据库工具对其内容进行抓取、管理和处理。简单说就是,难以用常规的数据库工具获取、存储、管理、分析的数据集合。
大数据来源:人类社会的所有行为,比如交易、教育、出行、娱乐、吃住......
大数据包含的元素:文字、图片、视频、音频、生物信息、生产资料......