『壹』 关于人工智能搜索引擎

实际你的问题抄主要就是集中在图像识别上。如果程序能从图像中获取有用信息,那程序人工智能就能解决人眼的问题,但目前处理图像的程序好像只有人脸识别、指纹识别、手写体识别等简单的识别,你看,如果囊括到世间万物,都要让电脑来识别,是不是很难。我想至少用以上三种的建模思维是解决不了这个问题的。
再者,如果真能从图片中提取了信息,那么这个信息用什么语言表示(是否是自然语言),一幅图包含的信息是无限的,自然人也只能根据生活经验提取几个简单的信息。所以,如果电脑真能提取信息,那其又怎能知道你要的是哪方面的信息呢?
这是本人对这方面的一个认识,我并不是否人这种功能不能实现,但个人感觉目前难度太大

『贰』 人工智能领域的论文真的不知道怎么写

用相关的事物抄代替所要表达的事物。借代种类:特征代事物、具体代抽象、部分代全体、整体代部分。如:不拿群众一针一线。(《三大纪律八项注意》)先生,给现钱,袁世凯,不行么?(叶圣陶《多收了三五斗》)
对比是把两种不同事物或者同一事物的两个方面,放在一起相互比较的一种修辞。例如:有的人活着,他已经死了;有的人死了,他还活着。(臧克家《有的人》)(编录人教版小学语文六年级上册)
运用对比,必须对所要表达的事物的矛盾本质有深刻的认识。对比的两种事物或同一事物的两个方面,应该有互相对立的关系,否则是不能构成对比的。

『叁』 什么是人工智能的搜索方式

什么是搜索?搜索是人工智能领域的一个重要问题。它类似于传统计算机程序中的查找,但远比查找复杂得多。传统程序一般解决的问题都是结构化的,结构良好的问题算法简单而容易实现。但人工智能所要解决的问题大部分是非结构化或结构不良的问题,对这样的问题很难找到成熟的求解算法,而只能是一步步地摸索前进。就像是甲、乙两个不同的网络,甲网络中的某一台计算机A要想找到乙网络中的数据。乙网络位于广域网中,A的目标就是要找到乙网络(实际上就是找到甲主路由器的IP),但是A不知道目标的具体位置,只能试探着去找。像这样摸索着前进,不断搜索前进方向的过程称为搜索。从理论上讲,只要乙不犯规 (不会关闭设备),A终究是会找到乙的(当然这必须是在甲、乙本来是可以互通的基础上)。当然,A找到乙所需的时间是无法预测的。如果A以前就访问过乙网络上的某台主机,在找的过程中,可以得到路由器中更新的路由表的支持,很快会找对了方向,可能花费的时间就会少些。相反,也有可能A找遍了所有的地方,最后才找到乙(极端情况)。 搜索,通常可分为盲目搜索和启发式搜索。盲目搜索是按预定的控制策略进行,在搜索过程中获得的中间信息不用来改进控制策略 。这在复杂网络中的路由选择会经常用到。广域网中的动态路由协议,为了学习相邻路由器的路由,为了确定最短路径,总是主动地去搜索相邻的路由设备。由于路由选择总是按预先规定的方式进行,未能考虑到环形结构或不可到达情况,因此效率不高,具有盲目性,往往会因此占去不少的网络带宽。启发式搜索是在搜索过程中根据问题的特点,加入一些具有启发性的信息,如从上一级路由器中找到相应的路由表来确定下一步搜索的路线,加速问题的求解过程。显然,启发式搜索的效率比盲目搜索要高,但由于启发式搜索需要与网络本身特性有关的信息,而这对非常复杂的网络是比较困难的,因此盲目搜索在目前的应用中仍然占据着统治地位。而盲目搜索中最行之有效、应用最广泛的搜索策略就是:宽度优先搜索和深度优先搜索。这两种搜索方法在很多人工智能的资料中都有介绍,关于算法也给出了简单的设计思路。这里只对简单应用及体会做简单介绍。 宽度优先搜索,又称为广度优先搜索,是一种逐层次搜索的方法。在第n层的节点没有全部扩展并考察之前,不对第n+1层的节点进行扩展。设V1为起始节点,则搜索的顺序为:V1V2V3V4V5V6V7 Flash5中Action Script功能非常强大,其实它涉及到的最主要的问题就是动作怎么通过指定路径或一个大概的方式去完成动作的结果。利用此算法可以很好地解决这个问题。打红警,玩帝国时,指挥坦克或炮车去指定位置,计算机控制坦克通过此算法找到最短路径行进只需要将屏幕分成多个区间并编成号码,实际上从源地址到目标地址就是找到到达目标地址的一串区间号码。这样问题就可以程序化了。至于具体的设计流程和源程序这里就不多讲了。 Dijkstra单源最短路径算法和Prim最小生成树算法都采用了和宽度优先搜索类似的思想。 实际上网络上许多协议和应用程序都会用到类似的思想。例如,生成树协议中,为了确定生成树的树根。它要确定每一台交换机的树值并不断地更新结果。象使用网络下载某个软件时,它的每个线程都会去找目标地址,来确定到达的路径。 因为宽度优先搜索是针对非结构化或结构不良的问题,所以只要碰到类似的情况只是将具体条件转化一下,就可以应用此算法了。

『肆』 求一篇有2500字以上的关于(人工智能在现代战争中的应用)的论文!!谢谢!

全分布式人工智能技术在舰艇指控系统中的应用研究
摘 要:为适应未来信息化海战场的需要,必须提高舰艇指控系统的指挥效能。舰艇指控系统的智能化是提高舰艇指挥效能的关键,也是必由之路。本文主要论述了信息战中智能化作用的地位,特别针对舰艇指控系统;并给出了一种采用全分布式人工智能技术的智能化舰艇指控系统结构模型。

关键词:信息战; 舰艇指控系统; 全分布式人工智能技术; 指挥效能

中图分类号:TP18 文献标识码:A

Study of Full Distributed Artificial Intelligence in Shipborne C2 System

ZHANG Yu-ce , YANG Qing-song , CHEN Ke

Abstract: In order to be adapted to the demand of information warfare (IW), the command efficiency of shipborne C2 system must be improved. The intellectualization of shipborne C2 system is the key factor of improving its command efficiency. This paper gives one model of intellectualized shipborne C2 system using full distributed artificial intelligence.

Key words: IW; shipborne C2 system ; distributed AI technology ; command efficiency

0 引言

1985年,美国的军事家首先提出“信息时代的到来正在引发一场新的军事革命,以信息技术为特征的新战争形态正在出现”,而后提出“信息战”,如果说海湾战争首次向世人显示了信息优势的巨大战略作用,那么美英对伊拉克的战争则是信息战的进一步延伸。美英正是通过运用先进的情报系统、电子战装备、精确打击力量重创伊拉克的有生军事指挥系统,从而牢牢地掌握了战场的制信息权,最终以较小的代价取得了全面胜利。对于信息战的特征,从不同的角度都会得出不同的解释。而外军普遍认为,信息战实质上就是计算机战,特别是一种高层次的智能较量,海湾战争和近期几场局部战争,充分体现了高技术战争的智能化特征。这种特征尤其体现在战争的孕育期以及到战争实施期的过渡。1997年1月3日,美国防部下属国防科学委员会的一个研究小组在提交的一份题为“信息战--防卫”的报告中,就特别强调要强化部队的智能化反应能力,呼吁军方加强“信息战”的防卫能力,以防止电子“珍珠港”事件的发生,保证美国军方现有210万

台计算机和1万个地方性计算机网络不轻易遭到重创。另外,在战术运用上也强调对敌摧毁、破坏和利用的智能化综合应用,同时也是作战保密、军事欺骗、心理战、电子战、火力摧毁等多种作战行动在指挥对抗过程中综合发挥作用的必然要求[1]。

美军针对战争形态嬗变以及未来战争的要求,凭借其高技术方面的优势,提出了“数字部队”的现代化建设方案,其中首要的一条,便是实现指挥与控制系统以及武器装备的智能化。武器装备和作战指挥的智能化,将最大限度地延伸“人体”的功能,并成为提高军队战斗力的一个新的增长点。因此,外军有专家预言:“未来谁能在人工智能领域中取胜,谁就将取得新军事革命的主动权”。

1 全分布式的新型智能化舰艇指控系统的作用

1.1 提高信息共享程度,增强系统生存能力和抗摧毁能力

所谓全分布式是指整个系统实现在地点上的分布、功能上的分布以及控制上的分布。因此,这种分布不仅体现在系统的硬件上、地点上、分布式拓扑结构上,更重要的是在其软件上的分布。全分布体系结构,每一个节点都装有整个应用软件,系统的管理软件分布在各个节点,但只有一个在工作,同时采用分布式数据库。这样的好处是,当某个地点、功能或者控制上失效可由备份处理能力和功能冗余软件恢复。主要功能可以从一个节点重新分配到其它节点;而当正在工作的运行系统管理软件的节点失效时,可自动重新安装运行系统管理软件。软、硬件全分布体系统结构的实现有赖于一种模块化的拼接技术的支持,这种技术采用了Σ拼接技术[2] ,是一种典型的系统模块化、全分布式体系结构的技术。由于现代海战的残酷性,采用全分布式体系结构,能够提高信息共享程度,增强系统生存能力和抗摧毁能力,提高系统的通装性,能够满足军方对指控系统可靠性高、抗摧毁性强、生命力强、通信组织灵活以及自动化程度高的要求。

1.2 提高信息和决策的合成效率

智能化能提高舰艇指控系统信息采集的效率,提高信息的及时性、准确性和可用性,信息的采集依赖于战场或更大范围的环境监视与侦察,这又需要在空间上分散的部队或其他相应的载体来完成。而这会引出两个问题,一是如何实现部队或载体的侦察器材最佳配置以及相互之间的通信联络;二是当某一个侦察器材无法有效地执行某一给定的侦察任务时,如何才能不影响系统整体任务的完成。而解决这些问题的有效方法就是采用分布式人工智能(DAI)技术,开发以多主体系统(MAS)为基础的信息采集系统,使各种侦察主体自主运行,既能够与动态的战场进行交互作用和实施推理,同时又可和别的主体进行协调与协作,因而具有很高的信息采集效率和自我重组能力。

智能化辅助决策提高了舰艇指控系统指挥决策的实用性和适应性。计算机辅助决策通常有检索型和智能型两种类型。检索型将先验设想制定的多种作战预案存于软件库中,需要时按一定相关性准则从库中找出作战预案,提供给指挥员使用。智能化辅助决策则不仅如此,更重要的是具有人工智能特征,可以按照军事专家的知识和推理过程,依据实际情况,自动地、实时地提供给指挥员满足当前需要的作战方案。显然,智能型比检索型具有更多的灵活性和更大的适应性,更符合战场多变的实际情况。

智能化辅助决策系统可以帮助舰艇指挥人员解决普通方法难以解决的半结构化或非结构化的决策问题。这种决策问题很难用常规的方法加以解决,而通过利用智能辅助决策和知识推理,可以得到令人满意的解答。这样,改进了决策过程,使决策者能够实现定性与定量相结合的高质量的决策和多目标综合决策。

1.3 促进全新指挥控制方式的产生

智能化的舰艇指控系统需要与之相适应的指挥控制方式才能实现在智能化状态下实施实时、高效的指挥控制。因此,一些全新的指挥方式应运而生,如网络式指挥、非分层式指挥、互访式指挥等,通过互联网络和高效的智能化处理系统及时处理、传递信息,能使指挥员随时掌握战场情况并下达作战命令,从而可以及时捕捉战机,实现实时决策和控制。

从指挥控制中的攻击行动来看,由于智能化的舰艇指控系统的工作稳定性较好,在其运作过程中只要其工作环境和工作程序不遭到直接破坏,它就能够持续正常地进行工作。因此,与以往相比,与人机合一的指挥系统进行对抗,客观上不仅要对敌方指挥员的有关情况了如指掌,而且还必须准确地掌握敌方指挥信息系统处理和使用信息的方式及其运作的程序,以及其指挥信息系统对己方不同的信息攻击手段、攻击方式的承受能力。

从指挥控制中的防护行动来看,在指挥系统信息化、网络化以前,指挥过程的防护主要表现为采取各种手段(如适时更换通信密码等)来确保信息传输过程中的保密性。而现在,指挥系统的信息化改变了这种状况,使指挥和指挥系统的防护变得更加复杂。它不仅包括确保信息传递过程中的保密,而且还包括确保系统免受病毒及其他攻击的侵害,保证系统的原始数据在运作和传递过程中不改变其原来性质和不被对方所窃取。美国军方的试验表明,对一万个计算机系统进行攻击,在成功率高达88%的情况下,只有4%的攻击行动被探测到。因此,在信息化战场上对己方的指挥信息系统进行防护,没有及时、准确和充足的情报保障,就无法采取相应的防护措施,甚至连发现敌方的攻击都无法做到。

1.4 提高作战人员的适应能力

未来海战场作战人员的反应能力很难适应来自多方向、多批次、多个目标、全方位的威胁。利用智能化的舰艇指控系统能够提高作战人员,特别是指挥人员对复杂战场的适应能力。当然,系统的智能化不仅没有降低反而提高了对人的要求,对人的素质产生了一种巨大的需求,促使指挥人员在知识结构、思维方式等各方面素质的转变和提高。指挥人员要想驾驭现代战争,首先必须驾驭智能化的指控系统。同时,智能化指控系统也利用计算机技术、虚拟现实(VR)技术和分布网络技术提供了一些崭新的训练方法和手段,如:模拟沉浸式训练、虚拟现实训练、交互分布式训练等,改变了传统的训练模式,增大了训练的科学性、对抗性和经济性,可以有效的提高训练质量。

2 建立分布式人工智能技术的舰艇指控系统

采用分布式人工智能技术DAI可将问题化解为多个具有层次结构的分问题[3],运用大系统分解协调方法求得满意解,从而减少系统建模求解的复杂性。为提高决策效率,建立如图1所示的分布式人工智能舰艇指控系统。

图1 分布式人工智能舰艇指控系统结构图

由图1可以看出:这种舰艇指控系统是战场、作战、军事专家知识的有机统一,并具备能够自我学习、自我完善能力的智能系统。它能够根据战场态势分析、威胁度评估、威胁源诊断等信息生成用于决策的模型,调用相关的数据和算法提供备选方案,并对各种方案进行评估和优选,通过大屏幕用户界面进行人机对话,帮助指挥员下决心及传输指令。当舰艇各执行单元接到指令后,予以响应、动作。

图中,据库主要存储各种武器装备战术性能参数和典型编制、运算过程的动态参数等;知识库主要存储战役战术原则、兵力兵器使用原则,各种典型想定,包括战场环境、作战企图和态势 ,评估作战进程所必需的基本算法等;模型库主要存储与作战有关的敌我双方各种武器系统模型、线性和非线性规划模型、推理分析模型、预测模型、模拟试验模型、优化模型、评估模型、综合运筹模型、数据处理模型、图形图像报表模型、智能模型等;人机对话系统是指挥控制系统中用户和计算机的接口,起着在操作者、模型库、数据库、知识库之间传递 (包括转换)命令和数据的重要作用;自动推理机则完成定量描述难以实现的某些复杂作战过程决策。

而基于信息库的智能模糊专家系统主要由模糊产生器、模糊消除器、模糊推理机、知识获取模块、模糊知识库、模糊数据库及人机接口组成[4],如图2所示。

主要任务是通过对原始信息空间的操作,获取各种数据信息,再由模糊产生器将其映射为一个模糊集合作为初始输入,然后利用模糊知识库中的语言信息——事实和规则,采用“黑板”模型进行问题分解、推理求解及协作控制,并采用“黑板+管道”的通信机制与其他子系统/模块传递控制信息和知识信息,从而确定智能化配置,控制作战指挥模式的切换,完成作战任务的分配与调度、模糊神经网络群系统结构与参数的自适应调整与优化、对各子系统/模块的故障隔离与系统重构以及网络通讯、各智能接口的管理等。

图2 基于信息库的智能模糊专家系统结构图

3 结束语

通过以上论述可以知道,全分布式的智能化舰艇指控系统能够真正、实时地将战场、作战指挥行动以及后方军事专家知识有机地融和在一起,使得各种武器装备的效能得到最大限度的发挥。这种舰艇指控系统能够突破现有的战场时空,改变信息战场的面貌和形态,引起一场真正意义的新军事革命,因而是舰艇指控系统的发展趋势。

『伍』 如何制定检索策略

制定检索策略:确定检索系统、确定检索途径、选定检索词、调整检索方案。内

1、确定检索系统:根据课题选择容合适的检索系统,它必须包括检索者检索需求的学科范围和熟悉的检索途径。在计算机检索中还需要确定检索所需要的文档名称或代码

2、确定检索途径:各检索系统一般都具有许多索引体系(即检索途径),应根据课题需要选择自己熟悉的检索途径。可多途径配合使用。

3、选定检索词:各种检索途径均须有相应检索词(亦称入口词)方可进行检索。如分类途径以分类号作为检索词,主题途径以标题词、关键词等作为检索词等等。计算机检索还须选定检索词编制布尔逻辑提问式。

4、调整检索方案:根据检索过程中出现的各种问题及时调整方案,扩大或缩小检索范围。



(5)人工智能搜索策略论文扩展阅读

在构造检索策略过程中,要涉及到许多方面的知识与技能。诸如,用户对检索课题的明确程度,对检索课题的分析;对数据库及其系统特性和功能的掌握;编制逻辑检索式的技巧以及调整检索策略的方法等方面都会影响用户检索的整体效果。

因此,制定检索策略为一种全面的知识与技能,也是一种经验。掌握了这种技能和经验,再通过广泛实习,可以获得比较好的检索效果。

『陆』 如何查找有关“人工智能”方面的文献写出详细的检索策略

有很多网站是专门“卖”这些文献的,我记得有万方数据什么,那个可以搜索文献,但是都是要付费的,不知道你是不是大学生,一般学校会为学生老师提供搜索,并且是免费的,就是学校买的

『柒』 如何看待人工智能的论文

人工智能:冲击,还是救赎?

人工智能,人类期待的下一个科技新燃点正在试图“引爆”我们的社会
交朋友、订餐、打车、网上购物、众筹投资等等,这些我们习以为常的生活技能已经被我们通过众多的社交媒体和App而掌握。然而,如今硅谷再次找到了下一个新燃点——人工智能(AI),试图再次“引爆”我们的世界。截至目前来看,人们对这一科技的未来十分有信心,并且部分学者及科学家,如牛津大学教授卢西亚诺·弗洛里迪,麻省理工斯隆管理学院的埃里克·布莱恩约弗森、安德鲁·麦卡菲等人,认为人工智能或许会成继哥白尼革命、达尔文革命后又一人类自我认知革命,蒸汽机工业革命后的又一机器革命。
未来,人工智能究竟会成为人类认知的冲击力量,还是世界时代发展的技术革命救赎?“硅谷独家大王”,《纽约时报》高级科技记者约翰·马尔科夫,凭借他对互联网发展的惊人洞察力和敏锐度,为我们带来深刻解读。
AI与IA
《时间线》:尽管AI已经成为当前的热门话题,但是似乎AI还没有被给予一个较为完整的定义。在您看来,AI的定义是什么?
马尔科夫: 从普遍共识角度来看,AI是一个关注于执行类似人类能力的技术的领域,包括从认知到语音、视觉以及物理运动。因此机器人学是AI的一个子集。值得注意的是,麦克卡尼最初创造了这个词,因为他想创造和替代控制论领域,主要是因为他不喜欢Norbert Wiener。
《时间线》:在您的《与机器人共舞》这本书中,您为我们呈现了另一个概念,IA(智能增强)。您能为我们详细解释一下IA吗?
马尔科夫:智能增强,即IA,是在20世纪60年代由计算机科学家Douglas Engelbart创造的。Engelbart后来还发明了直到现在我们仍在电脑和网络上使用的电脑鼠标,超文本和其他技术。在提出智能增强一词时,他打算使用各种基于计算机的技术来帮助知识工作者更有效地进行工作。
《时间线》:关于AI与IA的发展关系,您认为它们之间是互斥的还是互相支持的?
马尔科夫:AI与IA的关系是分歧并悖论的。悖论的原因是如果你增强人类智能,意味着你可能需要较少的人类去处理某个任务。我着手写《与机器人共舞》就是为了探索这两个在过去半个世纪都没有任何联系的截然不同的计算机世界。面对这个挑战,我认为的解决办法即是以人类为中心的工程设计。
人机关系与机器人犯罪
《时间线》:人机关系一直是很有争议的话题。在您看来最合适的人机关系是怎样的?您是否同意《人工智能时代》作者Jerry Kaplan教授提出的AI可能会加剧财富分配不均的观点?
马尔科夫:计算机科学家Alan Kay曾说,我们可以选择去设计那些系统作为我们的奴隶,合作伙伴或主人。(他这番话来自黑格尔。)我也赞同通过设计那些可以充当工作同伴的系统来作为解决办法。至于Jerry Kaplan先生提出的关于技术产生更大的财富不平等的观点,我认为相关的证据和情况是复杂的。我看到有一些情况和趋势是反映了他的观点,但是另一些情况确实是与其相背离的。
《时间线》:在机器帮人们解决很多问题同时也意味着人类在逐渐被机器简化。例如现在人们使用的智能手机将很多复杂程序简化,用户不用思考太多的操作流程,只要几步简单的操作就可以掌握它的功能,以至于帮助人们解决很多问题。您认为智能机器的“思维”是否会使人类智慧“退化”?
马尔科夫:不得不说这确实是个问题,这事关我们怎样设计那些会与我们产生相互作用及相关性的AI。比如说,可能通过使用AI去增强一个医生的决策能力和诊断能力。或者,相反地,可能在AI的协助下使有较浅资历和能力的医生助手来替代医生。哪个是正确的选择呢?我想这是很难决定其一的,但它确实是一个社会选择。
《时间线》:现在人们最直观的AI感受除了智能手机外就是目前大热的无人驾驶汽车,但是近期特斯拉无人驾驶汽车车祸死亡事故将安全问题推向舆论风口浪尖。关于最后的追责问题引起人们关注,您如何看待这类问题?在未来,机器人犯罪是否会成为重要的伦理问题之一?
马尔科夫:完全无人驾驶要比欧洲、美国、亚洲的工程师所认为的无人驾驶挑战更大。来自技术和监管的挑战使得设计者需要比想象中更多的时间来设计完全无人驾驶系统。关于完全无人驾驶的责任认定问题,最简单的答案就是责任归属制造者。我认为AI技术将很快被滥用,正如现如今我们使用的相关计算机技术被滥用一样。或许,在未来,语音合成将很可能成为社会工程攻击人类诚信的武器。
人工智能全球化与产业革命
《时间线》:自集成电路发展开始,摩尔定律成为科技发展的默认趋势,但是似乎自大数据、云计算、AI等出现后,摩尔定律在逐渐被打破,您如何看待这种情况?对摩尔定律的突破是否也意味着科技发展的新形式?
马尔科夫:摩尔定律的影响现在是失速的。登纳德缩放比例定律(关于处理器时针速度的指数增长)终结于2006年,并且单个晶体管成本的下降终结于2014年。这意味着始于1965年的“搭便车效应”现在已经终结了。我不知道制造技术在未来是否有新的突破,但是目前还未发生什么。这也不意味着计算机进程正在结束,只是未来可能更多的是依赖人类的创造力。
《时间线》:随着技术的进步,AI技术已经成为部分国家的战略发展,从德国的工业4.0到中国的互联网+,AI全球化成为必然趋势,但这一趋势也毫无疑问地在挑战着目前的发展模式,您认为AI的爆发是否会彻底颠覆人类发展成为新一次的产业革命?
马尔科夫:不,我认为不会的。AI本质是一种技术,就像汽锤或卡车一样。在任何社会中,它既可用来增强人类能力但也可取代人类。但这依赖于如何使用和部署AI技术。
《时间线》:AI和智能机器人的渗透已经开始在影响人类生活了,我们看到在部分行业中,部分职业已经被机器人取代,同时因为AI的出现也衍生出不少新的行业,您认为这一变化是否在预示着AI对产业结构的改变?人类的工作真的会被智能机器抢走吗?您认为人们应该如何应对这一变化?
马尔科夫:AI和机器人的到来要比其狂热者所认为的慢很多。这些技术在被演示的时候表现得非常好,但是目前有些技术在现实生活中仍有些不切实际。一些支持者认为,技术的快速发展在未来将是继续的趋势,但是事实上有些证据却表明速度是慢了下来,而不是持续加速。对于AI和机器人的到来,我认为在许多社会中,特别是那些正在加速成熟的国家,例如中国,如果机器人来得及时,那么对于这些国家来说将是很幸运的。
中国竞争
《时间线》:您能否简单对比下美国AI发展与中国AI发展,有何相同点和不同点?您对中国的AI技术和智能机器人的发展有何看法?对中国的企业家有何建议?
马尔科夫:由于贵国政府没有允许我作为一个报道者在贵国工作,所以很抱歉我的观点很有限。不过,有证据表明,中国正在快速追赶美国的创新能力。但是我还没有见到中国计算机科学家和工程师有根本性的突破,大部分都还只是渐进式的发展。
《时间线》:目前中国经济和科技在面临一次新的转型,中国逐渐在由“中国制造”转变为“中国创造”,您认为AI的爆发对这一转型会产生怎样的影响?
马尔科夫:我认为“中国创造”是一个目标。当新奇的中国技术出现,或是源自中国想法而不是复制美国而产生的新技术平台出现时,那将会非常有意思。

『捌』 信息检索与利用论文

现代信息检索论文: 现代信息检索方法的探讨 要想充分利用这些浩如烟海的文献信息资源,必须借助各种各样的检索工具。同时,因特网信息资源的骤增及其异构性、动态性,不断给信息检索带来新的挑战。信息检索已成为现代社会信息化和各种应用的关键。如何更高层次的模拟、应用人脑的智能原理,从本质上变革信息资源检索方法,已成为现代化信息知识检索理论研究的热点。实践证明,将人工智能技术与信息技术结合,发挥人工智能的作用,是一条成功的经验。下面就知识检索与信息检索的关联和发展,作初步的探讨。 一、布尔检索 利用布尔逻辑算符进行检索词或代码的逻辑组配,是现代信息检索系统中最常用的一种方法。常用的布尔逻辑算符有三种,分别是逻辑或“OR”、逻辑与“AND”、逻辑非“NOT”。用这些逻辑算符将检索词组配构成检索提问式,计算机将根据提问式与系统中的记录进行匹配,当两者相符时则命中,并自动输出该文献记录。 下面以“计算机”和“文献检索”两个词来解释三种逻辑算符的含义。①“计算机”AND“文献检索”,表示查找文献内容中既含有“计算机”又含有“文献检索”词的文献。②“计算机”OR“文献检索”,表示查找文献内容中含有“计算机”或含有“文献检索”以及两词都包含的文献。③“计算机”NOT“文献检索”,表示查找文献内容中含有“计算机”而不含有“文献检索”的那部分文献。 检索中逻辑算符使用是最频繁的,对逻辑算符使用的技巧决定检索结果的满意程度。用布尔逻辑表达检索要求,除要掌握检索课题的相关因素外,还应在布尔算符对检索结果的影响方面引起注意。另外,对同一个布尔逻辑提问式来说,不同的运算次序会有不同的检索结果。布尔算符使用正确但不能达到应有检索效果的事情是很多的。 二、信息检索 信息检索起源于图书馆的参考咨询和文摘索引工作,从19世纪下半叶首先开始发展,至20世纪40年代,索引和检索已成为图书馆独立的工具和用户服务项目。 信息检索通常指文本信息检索,包括信息的存储、组织、表现、查询、存取等各个方面,其核心为文本信息的索引和检索。它是基于信息组织形式,如字符串、结构化数据库,应用信息处理方法,如排序数据查找、字符匹配,实现效率不高的检索。信息检索综合应用布尔检索方法和基于超链的检索技术,改进了基本检索功能,但缺点是对精确的提问不能给出精确的回答。从历史上看,信息检索经历了手工检索、计算机检索到目前网络化、智能化检索等多个发展阶段。 目前,信息检索已经发展到网络化和智能化的阶段。信息检索的对象从相对封闭、稳定一致、由独立数据库集中管理的信息内容扩展到开放、动态、更新快、分布广泛、管理松散的Web内容;信息检索的用户也由原来的情报专业人员扩展到包括商务人员、管理人员、教师学生、各专业人士等在内的普通大众,他们对信息检索从结果到方式提出了更高、更多样化的要求。适应网络化、智能化以及个性化的需要是目前信息检索技术发展的新趋势。 三、知识检索 知识检索的基本思想是,模拟扩展人类关于知识处理与利用的智能行为和认识思维方法,是充分利用在线图书馆和数字图书馆的文献信息资源的有利工具。例如:抽象思维方法,形象思维方法。知识检索具有明显的优势:①实现信息服务向知识服务的转化,向用户提供潜在内容知识,以及分析预测后的超前性领域成果或知识。②提供主动服务方式,自动优化用户需求,主动提供个性化检索。③面向用户,依据用户的需求及其变化,能灵活选择理想的检索策略和技术,并且将繁重的知识信息存取工作从用户移向了计算机。④综合应用各类知识和各种高效的智能技术,全面提高检索效率。 知识检索是综合应用信息管理科学人工智能认知科学及语言学等多学科的先进理论与技术,基于知识和知识组织,融合知识处理和多媒体信息处理等多种方法与技术,充分表达和优化用户需求,能高效存取所有媒体类型的知识源,并能准确精选用户需要的结果。

『玖』 人工智能 思考题 什么是搜索 有那儿两大类不同的搜索方法

搜索是根据问题的实际情况不断寻找可利用的知识,构造出一条代价较少的推理回路线,使问题得到圆满解决的过程答。
两大类搜索的方法分别是盲目搜索和启发式搜索。
盲目搜索,就是未利用问题有关的知识,采用固定的方式生成状态的方法。即只按预定的控制策略进行搜索,在搜索过程中获得的中间信息不用来改进控制策略。显然这种方法的搜索效率是低下的,但方法具有通用性。
启发式搜索,与盲目搜索正好相反,它利用问题的知识,缩小问题的搜索范围,选择那些最有可能在最优解路径上的状态优先搜索,以尽快地找到问题的最优解。