『壹』 大数据与网络安全有何联系

可以通过大数据的分析来确保网络安全 网络安全是是确保大数据顺利进行 的基础 点赞吧

『贰』 大数据和网络安全在今后的发展前景哪个会更好那

应该说,两个都是都是今后发展的重点,再加上人工智能,个人觉得将会是互联网乃至工版业的一次权革命。
1、大数据方面。大数据范围很广,每个行业都有相应的应用,但是投入也是很大的,例如铁路系统,车辆违章监控系统,ETC系统等都应用了大数据,这些大数据将进行提炼后,用于基础分析、客户引导、智能管理等。对于提高政府职能,降低能耗,开源节流,人工辅助等都有很大很深的应用。总的来说,大数据中所有的数据都是有价值的,但是采集数据有很多的路要走,更多的需要物联网、人工智能的配合。
2、网络安全方面。这个应该是当下整个社会的一个突出问题。网络改变了人们的使用方式,推动了一系列的变革,但问题也是很突出,它是一把双刃剑,有利有弊,但总体利大于弊,正因为网络的不断发展,才推动了大数据的进步。
3、人工智能方面。人工智能应该是一个 今后发展的这个重点及亮点。人工智能主要利用语言、图像识别、传感器等设备集中进行运算,发挥其特定的作用,来执行任务。

『叁』 如何利用大数据来处理网络安全攻击

“大数据”已经成为时下最火热的IT行业词汇,各行各业的大数据解决方案层出不穷。究竟什么是大数据、大数据给信息安全带来哪些挑战和机遇、为什么网络安全需要大数据,以及怎样把大数据思想应用于网络安全技术,本文给出解答。
一切都源于APT
APT(Advanced Persistent Threat)攻击是一类特定的攻击,为了获取某个组织甚至是国家的重要信息,有针对性的进行的一系列攻击行为的整个过程。APT攻击利用了多种攻击手段,包括各种最先进的手段和社会工程学方法,一步一步的获取进入组织内部的权限。APT往往利用组织内部的人员作为攻击跳板。有时候,攻击者会针对被攻击对象编写专门的攻击程序,而非使用一些通用的攻击代码。此外,APT攻击具有持续性,甚至长达数年。这种持续体现在攻击者不断尝试各种攻击手段,以及在渗透到网络内部后长期蛰伏,不断收集各种信息,直到收集到重要情报。更加危险的是,这些新型的攻击和威胁主要就针对国家重要的基础设施和单位进行,包括能源、电力、金融、国防等关系到国计民生,或者是国家核心利益的网络基础设施。
现有技术为什么失灵
先看两个典型APT攻击案例,分析一下盲点在哪里:
1、 RSA SecureID窃取攻击
1) 攻击者给RSA的母公司EMC的4名员工发送了两组恶意邮件。邮件标题为“2011 Recruitment Plan”,寄件人是[email protected],正文很简单,写着“I forward this file to you for review. Please open and view it.”;里面有个EXCEL附件名为“2011 Recruitment plan.xls”;
2) 很不幸,其中一位员工对此邮件感到兴趣,并将其从垃圾邮件中取出来阅读,殊不知此电子表格其实含有当时最新的Adobe Flash的0day漏洞(CVE-2011-0609)。这个Excel打开后啥也没有,除了在一个表单的第一个格子里面有个“X”(叉)。而这个叉实际上就是内嵌的一个Flash;
3) 该主机被植入臭名昭著的Poison Ivy远端控制工具,并开始自BotNet的C&C服务器(位于 good.mincesur.com)下载指令进行任务;
4) 首批受害的使用者并非“位高权重”人物,紧接着相关联的人士包括IT与非IT等服务器管理员相继被黑;
5) RSA发现开发用服务器(Staging server)遭入侵,攻击方随即进行撤离,加密并压缩所有资料(都是rar格式),并以FTP传送至远端主机,又迅速再次搬离该主机,清除任何踪迹;
6) 在拿到了SecurID的信息后,攻击者就开始对使用SecurID的公司(例如上述防务公司等)进行攻击了。
2、 震网攻击
遭遇超级工厂病毒攻击的核电站计算机系统实际上是与外界物理隔离的,理论上不会遭遇外界攻击。坚固的堡垒只有从内部才能被攻破,超级工厂病毒也正充分的利用了这一点。超级工厂病毒的攻击者并没有广泛的去传播病毒,而是针对核电站相关工作人员的家用电脑、个人电脑等能够接触到互联网的计算机发起感染攻击,以此 为第一道攻击跳板,进一步感染相关人员的U盘,病毒以U盘为桥梁进入“堡垒”内部,随即潜伏下来。病毒很有耐心的逐步扩散,利用多种漏洞,包括当时的一个 0day漏洞,一点一点的进行破坏。这是一次十分成功的APT攻击,而其最为恐怖的地方就在于极为巧妙的控制了攻击范围,攻击十分精准。
以上两个典型的APT攻击案例中可以看出,对于APT攻击,现代安全防御手段有三个主要盲点:

1、0day漏洞与远程加密通信
支撑现代网络安全技术的理论基础最重要的就是特征匹配,广泛应用于各类主流网络安全产品,如杀毒、入侵检测/防御、漏洞扫描、深度包检测。Oday漏洞和远程加密通信都意味着没有特征,或者说还没来得及积累特征,这是基于特征匹配的边界防护技术难以应对的。
2、长期持续性的攻击
现代网络安全产品把实时性作为衡量系统能力的一项重要指标,追求的目标就是精准的识别威胁,并实时的阻断。而对于APT这种Salami式的攻击,则是基于实时时间点的检测技术难以应对的。
3、内网攻击
任何防御体系都会做安全域划分,内网通常被划成信任域,信任域内部的通信不被监控,成为了盲点。需要做接入侧的安全方案加固,但不在本文讨论范围。

大数据怎么解决问题
大数据可总结为基于分布式计算的数据挖掘,可以跟传统数据处理模式对比去理解大数据:
1、数据采样——>全集原始数据(Raw Data)
2、小数据+大算法——>大数据+小算法+上下文关联+知识积累
3、基于模型的算法——>机械穷举(不带假设条件)
4、精确性+实时性——>过程中的预测
使用大数据思想,可对现代网络安全技术做如下改进:
1、特定协议报文分析——>全流量原始数据抓取(Raw Data)
2、实时数据+复杂模型算法——>长期全流量数据+多种简单挖掘算法+上下文关联+知识积累
3、实时性+自动化——>过程中的预警+人工调查
通过传统安全防御措施很难检测高级持续性攻击,企业必须先确定日常网络中各用户、业务系统的正常行为模型是什么,才能尽早确定企业的网络和数据是否受到了攻击。而安全厂商可利用大数据技术对事件的模式、攻击的模式、时间、空间、行为上的特征进行处理,总结抽象出来一些模型,变成大数据安全工具。为了精准地描述威胁特征,建模的过程可能耗费几个月甚至几年时间,企业需要耗费大量人力、物力、财力成本,才能达到目的。但可以通过整合大数据处理资源,协调大数据处理和分析机制,共享数据库之间的关键模型数据,加快对高级可持续攻击的建模进程,消除和控制高级可持续攻击的危害。

『肆』 大数据和网络安全哪个方向更好

随着工业物联网(IIoT)在制造企业的全面铺开,安全专家必须准备好弄懂这些网络应有的样子与操作。同时,所有安全计划都需拥有足够的弹性,要能扛住迎面而来的各种攻击。未来十年将给网络安全带来最大影响的是什么?简单讲,这个问题的答案有两个方向:人工智能(AI)和大数据分析。

鉴于这些技术发展会给未来时光带来重大影响,未来的安全环境,将取决于AI和分析如何融入囊括了网络及物理安全的全面弹性安全计划。

网络安全-工业物联网

至于如何构建该整体安全项目,能够赋予制造商资产清单与网络可见性的网络监视技术是个不错的开始。随着公司企业越来越依赖数字环境,拥有该总体安全观也变得越来越重要了。如果十年内发生的攻击类似乌克兰两次遭遇的大断电,或挪威铝业巨头NorskHydro遭遇的勒索软件攻击,公司企业需准备备用工厂,以便在必要的时候能够手动运营以阻止攻击。

未来5~10年,物联网对工业运营的意义愈加重大,工业系统也将接入可大幅降低设备间通信延迟的5G网络,因而工业系统联网程度增加几乎已成不争的事实。物联网设备安全通常天生不怎么强,所以当物联网设备大规模部署的时候,工业系统便面临相当棘手的设备安全管理挑战了。

网络安全-工业运营

更糟的是,连接性增加意味着能尝试突破系统的黑客也增加了,更高端的黑客或许能够窥探系统,而网络安全问题也随着连接性的增长而愈加恶化。而且,很多工业系统如果以特定方式操纵可能伤及人命,所以连接性增加不仅影响到工业系统管理和保护,也影响公共政策制定。

网络安全-数字转型

工业网络安全遭受的最大影响将是数字转型的非预期结果。数字转型很好,也很有必要,但同时伴随着风险。随着我们引入越来越多的数字终端,数据流随之产生。数据流的飞速增长将超出我们的处理范围,无法现场有效分析全部数据。而且,我们将以这些数据驱动有关过程的决策,甚或驱动过程本身。最终,我们或许会开始通过人工智能/机器学习将这些分析性数据产品馈送回过程。

换句话说,过程产生数据,数据离开过程网络流向云、雾、湖、现场、外部等等地方,被分析、重用再馈送回过程。所有这些都会以我们刚刚才开始考虑的方式,往过程数据及该控制/过程网络外部相关系统,引入新的风险。

『伍』 大数据在网络安全中的挑战与机遇

大数据在网络安全中的挑战与机遇
虽然大数据是一个需要捍卫的挑战,但大数据概念现在已广泛应用于网络安全行业。
而大数据的高速、多样化、数量大的特性使其应用成为组织面临的一种挑战,它也为潜在的攻击者提供了一个诱人的目标。
但大数据技术也被用于帮助网络安全,因为许多相同的工具和方法可用于收集日志和事件数据,快速处理,并发现可疑活动。
更多的数据,更多的大脑
Bitdefender公司的高级威胁分析师Bogdan Botezatu表示:“现代网络安全解决方案主要由大数据驱动的。”
首先,所有主要的防病毒和端点防护供应商以及网络安全和防火墙提供商,都会对他们的系统进行大量的恶意软件和已知的攻击途径的培训。
有了数百万份样本,安全供应商可以训练他们的系统识别已知的攻击,但也可以识别允许他们发现以前从未见过的攻击的模式。
所有主要的安全厂商都已经将高级威胁检测、行为分析和机器学习添加到他们的系统中,或者正在努力赶上已经这样做的竞争对手。
Botezatu说:“机器学习算法每天都会在大量恶意文件中进行多次训练。质量保证运行在已知的良好文件上,以最大限度地减少误报。”
供应商并不是唯一收集信息虚拟海洋的人。
在组织内部,数据中心运营商正在从本地和云计算基础设施收集数据馈送,以查找可疑文件、行为和通信。
Botezatu说:“事件关联技术将攻击的不同组件组合在一起以阻止其冷却。”文件信誉系统会考虑客户池中存在多少个应用程序正在运行的实例,以了解该应用程序具有多大的恶意可能性。
没有存储和分析大量信息的能力,这些都不可能实现,并且可以实时进行。
“大数据为网络安全世界提供动力。”他说,“关于如何保护大数据的知识方面,没有垂直行业像我们这样享有特权。”
这是至关重要的,因为安全事件的范围越来越大。
据网络安全厂商Gemanto公司在今年4月发布的报告显示,去年有26亿条记录被突破,这一数字首次突破20亿,比上一年增长88%。平均每天超过700万条记录。
更加令人担忧的是,根据最新的Verizon数据泄露调查报告,在大多数违规情况下,系统受损的时间以分钟为单位进行测量,并在数小时内进行泄漏。
这将人们带入了网络安全领域的下一个大数据即将产生影响的领域:事件响应。
随着越来越多的数据收集的不仅仅是攻击,还涉及到数据中心如何应对这些攻击,安全行业正在开始创建自动化剧本,以便组织能够对攻击进行即时和智能的响应。
没有这种规模的公司要么必须等到收集足够的数据才能使分析有用或与同行分享他们的剧本。
企业需要留意供应商在这个领域的出现,他们不仅可以帮助数据中心将事件响应剧本集中在一起并实现自动化,还可以将它们收集到一个中心位置,在那里他们可以对响应进行分析,找出最好的策略,然后将这些知识添加到他们的推荐引擎中。

『陆』 大数据应用模式及安全风险分析有哪些

当前各个领域数据生成速度逐渐加快,需要处理的数据量急剧膨胀。这些巨大的数据资源蕴藏着潜在的价值,需要对其进行有效的分析和利用。当前数据的特点除了数量庞大之外,数据类型也变得多样化,其中包括了结构化数据、半结构化数据以及非结构化数据。这些数量庞大、种类繁多的海量数据,给传统分析工具带来了巨大的挑战。当前对数据的分析不再是简单的生成统计报表,而是利用复杂的分析模型进行深人的分析,传统分析技术例如关系数据库技术已经不能满足其要求。在扩展性上,通过增加或更换内存、CPU、硬盘等设备原件以打一展单个节点的能力的纵向打一展(scale up)系统遇到了瓶颈;只有通过增加计算节点,连接成大规模集群,进行分布式并行计算和管理的横向打一展(scale out )系统才能满足大数据的分析需求[u。因此传统工具在扩展性上遇到了障碍,必须寻求可靠的数据存储和分析技术来分析和利用这些庞大的资源。利用云计算平台搭建Hadoop计算框架成为当前处理大数据的主要手段。然而由于云计算和Hadoop应用的特点和自身安全机制薄弱,不可避免地带来了安全风险。
1、大数据应用模式
云计算(Cloud Computing)是一种基于Internet的计算,是以并行计算(Parallel Computing )、分布式计算(Distributed Computing)和网格计算(Grid Compu-tin助为基础,融合了网络存储、虚拟化、负载均衡等技术的新兴产物。它将原本需要由个人计算机和私有数据中心执行的任务转移给具备专业存储和计算技术的大型计算中心来完成,实现了计算机软件、硬件等计算资源的充分共享[z}。企业或个人不再需要花费大量的费用在基础设施的购买上,更不需要花费精力对软硬件进行安装、配置和维护,这些都将由云计算服务商CSP( Cloud Service Provider)提供相应的服务。企业或个人只需按照计时或计量的方式支付租赁的计算资源。云计算服务商拥有大数据存储能力和计算资源,被视为外包信息服务的最佳选择[31因此大数据的应用往往与云计算相结合。
Hadoop是当前最广为人知的大数据技术实施方案,它是Google云计算中的Map/Rece}4}和GFS( Google File System)的开源实现。Hadoop提供了一种计算框架,其最为核心的技术是HDFS ( HadoopDistributed File System)以及MapReee } HDFS提供了高吞吐量的分布式文件系统,而MapReee是大型数据的分布式处理模型。Hadoop为大数据提供了一个可靠的共享存储和分析系统[5-6 }v
尽管有一些组织自建集群来运行Hadoop,但是仍有许多组织选择在租赁硬件所搭建的云端运行Hadoop或提供Hadoop服务。例如提供在公有或私有云端运行Hadoop的Cloudera,还有由Amazon提供的称为Elastic MapReee的云服务等f}l。因此将云计算与Hadoop结合处理大数据已成为一种趋势。
2、大数据安全风险分析
随着大数据应用范围越来越广,对数据安全的需求也越来越迫切。
由于云计算的特点是将数据外包给云服务商提供服务,这种服务模式将数据的所有权转移给了CSP,用户失去了对物理资源的直接控制[A1。而云中存储的大数据通常是以明文的方式存在的,CSP对数据具有底层控制权,恶意的CSP有可能在用户不知情的情况下窃取用户数据,而云计算平台亦可能受到攻击致使安全机制失效或被非法控制从而导致非授权人读取数据,给大数据安全带来了威胁。
Hadoop在设计之初并未考虑过安全问题,在Ha-doop 1. 0. 0和Cloudera CDH3版本之后,Hadoop加人了Kerberos的身份认证机制和基于ACL的访问控制机制[91。即使在安全方面增加了身份认证和访问控制策略,Hadoop的安全机制仍然非常薄弱,因为Ker-beros的认证机制只应用于客户机(Clients )、密钥分发中心(I}ey Distribution Center, I}DC )、服务器(Serv-er)之间,只是针对机器级别的安全认证,并未对Ha-doop应用平台本身进行认证[}o}。而基于ACL的访问控制策略需要通过在启用ACL之后,对hadoop-policy. xml中的属性进行配置,其中包括9条属性,它们限制了用户与组成员对Hadoop中资源的访问以及Datanode和Namenode或Jobtracke:和Tasktrackers等节点间的通信,但该机制依赖于管理员对其的配置[川,这种基于传统的访问控制列表容易在服务器端被篡改而不易察觉。而且基于ACL的访问控制策略粒度过粗,不能在MapRece过程中以细粒度的方式保护用户隐私字段。况且针对不同的用户和不同应用,访问控制列表需要经常作对应的更改,这样的操作过于繁琐且不易维护。因此Hadoop自身的安全机制是不完善的。
2.1 不同应用模式下CSP及Uers带来的安全风险
云计算中Hadoop有多种应用模式。在私有云中搭建Hadoop,即企业自己应用Hadoop,使用该平台的是企业内部各个部门的员工,外部人员无法访问和使用这些资源。这时的CSP指的是Hadoop的创建和管理者,IaaS级和PaaS级CSP为相同的实体;在公有云平台应用Hadoop , C SP有2级,IaaS级CSP,提供基础设施;PaaS级C SP,负责Hadoop的搭建和管理。这时两级CSP往往是不同的实体。

『柒』 大数据存在的安全问题有哪些

一、分布式系统


大数据解决方案将数据和操作分布在许多系统中,以实现更快的处理和分析。这种分布式系统可以平衡负载,避免单点故障。但是这样的系统容易受到安全威胁,黑客只要攻击一个点就可以渗透整个网络。


二.数据存取


大数据系统需要访问控制来限制对敏感数据的访问,否则,任何用户都可以访问机密数据,有些用户可能会出于恶意使用。此外,网络犯罪分子可以入侵与大数据系统相连的系统,窃取敏感数据。因此,使用大数据的公司需要检查和验证每个用户的身份。


三.数据不正确


网络犯罪分子可以通过操纵存储的数据来影响大数据系统的准确性。因此,网络犯罪分子可以创建虚假数据,并将这些数据提供给大数据系统。比如医疗机构可以利用大数据系统研究患者的病历,而黑客可以修改这些数据,产生不正确的诊断结果。


四.侵犯隐私


大数据系统通常包含机密数据,这是很多人非常关心的问题。这样的大数据隐私威胁已经被全世界的专家讨论过了。此外,网络犯罪分子经常攻击大数据系统以破坏敏感数据。这种数据泄露已经成为头条新闻,导致数百万人的敏感数据被盗。


五、云安全性不足


大数据系统收集的数据通常存储在云中,这可能是一个潜在的安全威胁。网络犯罪分子破坏了许多知名公司的云数据。如果存储的数据没有加密,并且没有适当的数据安全性,就会出现这些问题。


关于大数据存在的安全问题有哪些,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

『捌』 大数据时代网络安全如何保障

如果是个人隐私文件需要加密可以使用红线隐私保护系统,如果是企业数据安全可以选择红线防泄密系统,都是加密数据,杜绝泄密问题。

『玖』 基于大数据环境的网络安全态势感知 会提什么问题

原创一份 什么时候交呢/