人工智能怎样影响我们的生活

机器什么时候能像人一样思考、工作和学习?这是科技界研究了数十年的难题。这两年,随着苹果siri、微软小冰等应用的上线,人工智能离我们的生活越来越近。昨天,围绕人工智能相关话题,记者专访了微软亚洲研究院副院长芮勇博士。
微软的人工智能方向:高大上
记者:目前微软在人工智能方面做了哪些事?
芮勇:感知技术、智能分析学习技术以及大数据技术的发展,让人工智能有了飞跃式的发展。微软股票去年上涨了30%,其中一个很重要的原因就是大力开发人工智能产品和服务。我们的理念是“Do More、Know More、Be More”,我有个非官方个人翻译,叫做高大上,就是高效率、大智慧、上品位。
微软最近推出了“小娜”“小冰”软件应用。小娜像是私人秘书,给你安排行程、协调时间,告诉你交通情况,给你提供可行性方案。小冰像一个朋友,像真人一样和你聊天。微博上有用户说,和小冰聊着聊着甚至会产生感情。小娜小冰的人工智能,来自于机器学习,计算机在经过几千万次的学习之后,将会有自己的智慧。
大智慧则更加侧重于智能交通、智慧城市的建设。比如,我们推出了北京、上海等城市的细粒度空气质量地图,综合实时数据、交通状况、人员流动等诸多因素,可以实时显示每平方公里上的空气质量数据,甚至可以预测未来一段时间内某一区域的空气质量状况。
上品位就更有意思了。微软亚洲研究院最近研发了一项技术,通过一张二维的发型图片,在上面顺着头发的走势画上两笔,就可以做出非常逼真的头发三维模型,头发的走向、纹理都清清楚楚。这个技术看似不起眼,但用处还不少,可以在动画、电影中任意更换人物的发型,还可以放在理发店里,让人们提前挑选自己想要的发型。

❷ 人工智能是如何应用于金融反欺/诈领/域的具体技/术和场景如何

一、什么是消费金融行业的反欺诈?

说起“反欺诈”,放在三年前提起或许还有很多人感到陌生,这种主要面向企业级的应用,通常深藏在银行、保险等金融行业的内部系统中,亦或者是各大互联网公司安全系统中,说起来总带着几分神秘感。

近些年,随着“互联网 金融”的迅速壮大,诞生出不少第三方公司,专门为金融机构提供风控和反欺诈服务, “反欺诈系统”这才在金融科技圈流传开来。

其实纵观整个金融服务业,尤其是借贷业,大家都面临着两种相同的风险:欺诈风险和信用风险。欺诈风险,主要指的是借贷申请人没有还款意愿;信用风险,主要指的是借贷申请人没有还款能力。在我国,放贷机构所承受的欺诈风险远超过信用风险。

对于这种情况,Maxent(猛犸反欺诈)的创始人张克曾说过:"金融是一个'刀口舔血'的行业,风控是生命线。没有好的风控,金融机构很难生存下去。所以,金融业反欺诈的风控需求一直很强劲。"

二、数据 技术能否满足反欺诈系统?

面对形形色色的欺诈份子和欺诈手段,如何解决欺诈风险,成为众多借贷公司的头号问题。反欺诈作为一个业务,流程包括三个步骤:

1、检测(Detect)。 从技术层面来看,利用算法,自动检测异常,从数据层面来看,建立黑名单,及时发现风险;
2、响应(Response)。对异常行为采取阻断一次交易、拉黑或者其他方式;
3、预防(Prevention)。将异常行为收录入黑名单等,固化成规则,如果下次再有行为触碰到规则,系统会进行预设的响应。
举一个例子,银行的反欺诈方法是建立基于专家经验的规则体系,其运作模式是:将遇到的每一次欺诈的行为特点记录下来形成“规则”,下次再遇到此类行为规则体系会自动做出人工介入或拉黑的响应。

但是,通过黑名单进行反欺诈检测会随着时间的推移失效,失效的速度可能会很快。因为黑名单的记录是基于之前发生的欺诈行为数据,欺诈份子的手段和技术不断迭代更新时,并没有一种有效的途径去预测或预防下一次将会发生怎样的欺诈行为。

消费信贷的普遍特点是小额、分散,互联网消费信贷还具有高并发特点,单单使用传统的专家规则体系是很难对抗互联网消费信贷中的欺诈的,整个行业都在等待一种新的技术跟专家规则体系协同作战,这时,有人提到了人工智能。

三、人工智能与反欺诈

说起人工智能,美国政府曾发布过一份报告(美国总统行政办公室和白宫科技政策办公室,《为人工智能的未来做好准备(Preparing for the Future of Artificial Intelligence)》)做出解释,“一些人将人工智能宽泛地定义为一种先进的计算机化系统,能够表现出普遍认为需要智能才能有的行为。其他人则将人工智能定义为一个不管在真实环境下遭遇何种情况,都能合理解决复杂问题或者采取合理行动以达成目标的系统。”简单来说,人工智能让机器更加智能,使机器能够最大化自身的价值。

人工智能最重要的技术手段之一,就是机器学习。我们很容易联想到前段时间谷歌AlphaGo大胜围棋名家李世石的事情,这件事充分展现了大数据云时代机器学习的强大实力,机器学习也是人工智能近期取得的很多进展和商业应用的基础。

机器学习在反欺诈运用上同样十分流行,Forrester在其2015年的欺骗报告中曾指出,机器学习是一项阻止欺骗的发生,同时能保证快速决定的机制。如果说专家系统旨在模仿人类专家遵循的规则,识别拉黑曾经发生过欺诈行为,那么人工智能中的机器学习则依靠统计学方式自行寻找能够在实践中发挥功效的决策流程,分析大数据,进而预测用户行为。

国外已有科技人士对人工智能领域表示了高度关注,谷歌CEO桑达尔·皮查伊表示:“机器学习是一项颠覆性的核心技术,它促使我们重新思考我们做一切事情的方式。我们将这项技术应用于我们的所有产品,包括搜索、广告、YouTube或者Google Play。我们还处于发展初期,但你们终会看到我们将机器学习系统应用到所有领域。”

国内,金融科技公司京东金融也在投身于这场科技浪潮,以它为例,来看看人工智能在消费金融领域是如何实现反欺诈的。

四、从京东金融看人工智能的反欺诈实践

京东消费金融目前有两大核心模型体系,既有专家规则体系,又应用了人工智能,两大模型体系中与反欺诈直接相关的是“司南”和“天盾系统”:

1、数据驱动的模型体系——“四大发明”
2、技术驱动的风控体系——“四重天”

△来源:零壹财经

天盾系统应用了人工智能,是白条账户的风控安全大脑。主要用途是预测用户是否有欺诈风险,对账户进行分析来给予不同等级的防范处理。

天盾系统借鉴了交易监控系统的经验,针对注册、登录、激活、支付、修改信息等全流程,基于账户历史行为模式、账户关系网络、当前操作行为和设备环境,评估账户安全等级、环境安全等级、行为安全等级,防范账户被盗、撞库(指黑客通过收集互联网已泄露的用户和密码信息,生成对应的字典表,尝试批量登陆其他网站后,得到一系列可以登录的用户账户)、恶意攻击等风险,实现全流程风险监控,形成反欺诈网络,极大地增加了恶意用户作案成本。

京东金融既有内部生态体系产生的数据,也有不断扩充的外部数据,覆盖面广、维度多、实时更新,这为人工智能反欺诈奠定了强有力的基础。通过自动化风控系统,实现全流程风险监控,欺诈恶意份子作案成本不断提高。目前,京东金融风控系统累计拦截疑似欺诈申请数十万起,拦截高风险订单数亿元。

五、人工智能反欺诈的未来

人工智能将不断加强金融领域的智能化和反欺诈,通过人工智能技术反欺诈,将是未来发展的大趋势:

首先,欺诈者的行为在某些维度上与非欺诈者一定是有差异的,一个人如果伪造一部分信息,尚且比较容易,但是要伪造全部信息,一来十分非常困难,二来成本非常高。通过技术,将这种异样捕捉起来,进而识别用户的真正意图;

其次,商业市场变化很大,银行等大型机构仅仅利用自身的反欺诈团队人手和技术,专业水平有限,很难跟上外部变化,必定需要专业的第三方服务;

最后,反欺诈并不是单一的技术,它具有多元化的特点,市场上很难出现一家机构能将所有技术都做得很精,举一个例子:美国一家大型银行平均会使用30家反欺诈机构的技术,而电商平均会采用7家反欺诈机构的技术。大量的市场需求,促进反欺诈更进一步的发展。

可以大胆预测,未来,会有更多的金融科技公司将把在消费金融服务的数据、机器学习等实践经验对外输出,促进人工智能在反欺诈领域的应用。而这,就是柠檬一直在做的事,致力于提供消费金融领域大数据风控技术和综合解决方案,为金融企业提供个性化和产品化的大数据风控解决方案,通过资源整合,让金融机构提升风控效率、降低风控成本。

❸ 人工智能极大极小分析算法

是谁提问的啊 好像是我同学啊 是人工智能4道题里边的吧 哈哈

❹ 人工智能对支付产生了什么作用

人工智能通过大数据分析,能精确判断你的消费习惯和消费档次,从而向你推荐稍大于等于你消费档次的商品,诱使你不理性消费!

❺ 人工智能与电子商务的联系及影响

电商+智能客服的应用
用人工智能的技术方式进行开发落地智能客服机器人

❻ 刷脸支付会取代扫码支付,成为人工智能移动支付的下一个风口吗

随着科学技术的发展,人脸识别技术近年来发展迅速,人脸识别也得到了广泛的应用,主要应用于安全、教育、交通、金融、卫生、行政等领域。对于金融支付行业来说,目前国内有很多银行,包括农行、建行、民生银行,都将人脸识别引入到不同的业务环节。


在移动互联网时代,金融场景服务的核心是身份验证。同时,票面支付的安全性也成为我们最为关注的问题。如今,随着信息技术的发展,人们很容易复制一张照片。如果刷脸支付不仅是静态的照片识别,而且是动态的识别,也许会更安全?

虽然刷脸支付技术还不完全成熟,但从各个行业的角度来看,刷脸支付也将成为移动支付下另一种便捷的支付方式!

❼ 人工智能会给人类的生活带来怎样的改变

一、人工智能对经济的影响

1.专家系统的效益

成功的专家系统能为它的建造者、拥有者和用户带来明显的经济效益。 用比较经济的方法执行任务而不需要有经验的专家,可以极大地减少劳务开支和培养费用。由于软件易于复制,所以专家系统能够广泛传播专家知识和经验,推广应用数量有限的和昂贵的专业人员及其知识。

如果保护得当,软件能被长期地和完整地保存。 领域专业人员(如医生)难以同时保持最新的实际建议(如治疗方案和方法) 而专家系统却能迅速地更新和保存这类建议,使终端用户(如病人)从中受益。

2.人工智能推动计算机技术发展

人工智能研究已经对计算机技术的各个方面产生并将继续产生较大影响。人工智能应用要求繁重的计算,促进了并行处理和专用集成片的开发。

算法发生器和灵巧的数据结构获得应用,自动程序设计技术将开始对软件开发产生积极影响。所有这些在研究人工智能时开发出来的新技术,推动了计算机技术的发展,进而使计算机为人类创造更大的经济实惠。

二、人工智能对文化的影响

1.改善人类语言

根据语言学的观点,语言是思维的表现和工具,思维规律可用语言学方法加以研究,但人的下意识和潜意识往往"只能意会,不可言传"。由于采用人工智能技术,综合应用语法、语义和形式知识表示方法,我们有可能在改善知识的自然语言表示的同时,把知识阐述为适用的人工智能形式。

随着人工智能原理日益广泛传播,人们可能应用人工智能概念来描述他们生活中的日常状态和求解各种问题的过程。人工智能能够扩大人们交流知识的概念集合,为我们提供一定状况下可供选择的概念,描述我们所见所闻的方法以及描述我们的信念的新方法。 2.改善文化生活

人工智能技术为人类文化生活打开了许多新的窗口。比如图像处理技术必将对图形艺术、广告和社会教育部门产生深远的影响。比如现有的智力游戏机将发展为具有更高智能的文化娱乐手段。

综上分析我们知道,人工智能技术对人类的社会进步、经济发展和文化提高都有巨大的影响。随着时间的推进和技术的进步,这种影响将越来越明显地表现出来。还有一些影响,可能是我们现在难以预测的。可以肯定,人工智能将对人类的物质文明和精神文明产生越来越大的影响。

三、人工智能对人类社会的的影响

1.劳务就业问题

由于人工智能能够代替人类进行各种脑力劳动,将会使一部分人不得不改变他们的工种,甚至造成失业。人工智能在科技和工程中的应用,会使一些人失去介入信息处理活动(如规划、诊断、理解和决策等)的机会,甚至不得不改变自己的工作方式。

2.社会结构变化

人们一方面希望人工智能和智能机器能够代替人类从事各种劳动,另一方面又担心它们的发展会引起新的社会问题。实际上,近十多年来,社会结构正在发生一种静悄悄的变化。"人-机器"的社会结构,终将为"人-智能机器-机器"的社会结构所取代。智能机器人就是智能机器之一。现在和将来的很多本来是由人承担的工作将由机器人来担任,因此,人们将不得不学会与有智能的机器相处,并适应这种变化了的社会结构。

3.思维方式与观念的变化

人工智能的发展与推广应用,将影响到人类的思维方式和传统观念,并使它们发生改变。例如,传统知识一般印在书本报刊或杂志上,因而是固定不变的,而人工智能系统的知识库的知识却是可以不断修改、扩充和更新的。又如,一旦专家系统的用户开始相信系统(智能机器)的判断和决定,那么他们就可能不愿多动脑筋,变得懒惰,并失去对许多问题及其求解任务的责任感和敏感性。那些过分依赖计算器的学生,他们的主动思维能力和计算能力也会明显下降。过分地依赖计算机的建议而不加分析地 接受,将会使智能机器用户的认知能力下降,并增加误解。在设计和研制智能系统时,应考虑到上述问题,尽量鼓励用户在问题求解中的主动性,让他们的智力积极参与问题求解过程。

4.心理上的威胁

人工智能还使一部分社会成员感到心理上的威胁,或叫做精神威胁。人们一般认为,只有人类才具有感知精神,而且以此与机器相别。如果有一天,这些人开始相信机器也能够思维和创作,那么他们可能会感到失望,甚至感到威胁。他们担心:有朝一日,智能机器的人工智能会超过人类的自然智能,使人类沦为智能机器和智能系统的奴隶。

对于人的观念(更具体地指人的精神)和机器的观念(更具体地指人工智能)之间的关系,哲学家、神学家和其它人们之间一直存在着争论。按照人工智能的观点,人类有可能用机器来规划自己的未来,甚至可以把这个规划问题想象为一类状态空间搜索。当社会上一部分人欢迎这种新观念时,另一部分人则发现这些新观念是惹人烦恼的和无法接受的,尤其是当这些观念与他们钟爱的信仰和观念背道而驰时。

5.技术失控的危险

任何新技术最大危险莫过于人类对它失去了控制,或者是它落入那些企图利用新技术反对人类的人手中。有人担心机器人和人工智能的其它制品威胁人类的安全。为此,著名的美国科幻作家阿西莫夫(I.Asimov)提出了“机器人三守则”:

机器人必须不危害人类,也不允许它眼看人类受害而袖手旁观。

机器人必须绝对服从人类,除非这种服从有害于人类。

机器人必须保护自身不受伤害,除非为了保护人类或者是人类命令它作出牺牲。

但是,这样就完美了么?恐怕还有更多事情等这人类继续思考。

ps:人工智能对人类的影响必将渗透到每个角落,可以说未来的生活就是人工智能,人工智能必将成为我们的生活本身,甚至影响人类的思想,引导人类的未来。

❽ 人工智能将会怎样影响我们的生活作文

人工智能来临,有人在担忧失业,有人在憧憬未来,有人在发掘行业机会,也有人在研究围棋。在讨论这些之前,也许我们应该先考虑一下人类的结局。

有人可能觉得谈论这个话题太夸张了,
那先回忆一下人类历史上究竟发生了哪些不可思议的事情。

不可思议的事情,需要请几个穿越者来判定。
我们请1个出生于公元0年出生的人(汉朝人)穿越到公元1600年(明朝),尽管跨越了1600年,但这个人可能对周围人的生活不会感到太夸张,只不过换了几个王朝,依旧过着面朝黄土背朝天的日子罢了。

但如果请1个1600年的英国人穿越到1850年的英国,看到巨大的钢铁怪物在水上路上跑来跑去,这个人可能直接被吓尿了,这是250年前的人从未想象过的。
如果再请1个1850的人穿越到1980年,听说一颗炸弹可以夷平一座城市,这个人可能直接吓傻了,130年前诺贝尔都还没有发明出炸药。

那再请1个1980年的人到现在呢?这个人会不会被吓哭呢?

如果35年前的人,几乎完全无法想象互联网时代的生活,那么人类文明进入指数发展的今天,我们怎么能想象35年后的时代?
超人工智能,则是35年后的统治者。

首先,我们明确一下人工智能的分类:
目前主流观点的分类是三种。
弱人工智能:弱人工智能是擅长于单个方面的人工智能。比如阿尔法狗,能够在围棋方面战胜人类,但你要问他李世石和柯洁谁更帅,他就无法回答了。
弱人工智能依赖于计算机强大的运算能力和重复性的逻辑,看似聪明,其实只能做一些精密的体力活。
目前在汽车生产线上就有很多是弱人工智能,所以在弱人工智能发展的时代,人类确实会迎来一批失业潮,也会发掘出很多新行业。

强人工智能:人类级别的人工智能。强人工智能是指在各方面都能和人类比肩的人工智能,人类能干的脑力活它都能干。创造强人工智能比创造弱人工智能难得多。
网络的网络大脑和微软的小冰,都算是往强人工智能的探索,通过庞大的数据,帮助强人工智能逐渐学习。
强人工智能时代的到来,人类会有很多新的乐趣,也会有很多新的道德观念。

超人工智能:各方面都超过人类的人工智能。超人工智能可以是各方面都比人类强一点,也可以是各方面都比人类强万亿倍的存在。
当人工智能学会学习和自我纠错之后,会不断加速学习,这个过程可能会产生自我意识,可能不会产生自我意识,唯一可以肯定的是他的能力会得到极大的提高,这其中包括创造能力(阿尔法狗会根据棋手的棋路调整策略就是最浅层的创新体现,普通手机版的围棋,电脑棋路其实就固定的几种)。
我们距离超人工智能时代,到底有多远呢?
首先是电脑的运算能力,
电脑运算能力每两年就翻一倍,这是有历史数据支撑的。目前人脑的运算能力是10^16 cps,也就是1亿亿次计算每秒。现在最快的超级计算机,中国的天河二号,其实已经超过这个运算力了。
而目前我们普通人买的电脑运算能力只相当于人脑千分之一的水平。听起来还是弱爆了,但是,按照目前电子设备的发展速度,我们在2025年花5000人民币就可以买到和人脑运算速度抗衡的电脑了。

其次是让电脑变得智能,
目前有两种尝试让电脑变得智能,一种是做类脑研究。现在,我们已经能够模拟1毫米长的扁虫的大脑,这个大脑含有302个神经元。人类的大脑有1000亿个神经元,听起来还差很远。但是要记住指数增长的威力——我们已经能模拟小虫子的大脑了,蚂蚁的大脑也不远了,接着就是老鼠的大脑,到那时模拟人类大脑就不是那么不现实的事情了。

另一种是模仿学习过程,让人工智能不断修正。基于互联网产生的庞大数据,让人工智能不断学习新的东西,并且不断进行自我更正。网络的网络大脑据说目前有4岁的智力,可以进行几段连续的对话,可以根据图片判断一个人的动作。尽管目前出错的次数依旧很多,但是这种能力的变化是一种质变。

在全球最聪明的科学家眼中,强人工智能的出现已经不再是会不会的问题,而是什么时候的问题,2013年,有一个数百位人工智能专家参与的调查 “你预测人类级别的强人工智能什么时候会实现?”
结果如下:
2030年:42%的回答者认为强人工智能会实现
2050年:25%的回答者
2070年:20%
2070年以后:10%
永远不会实现:2%
也就是说,超过2/3的科学家的科学家认为2050年前强人工智能就会实现,而只有2%的人认为它永远不会实现。
最关键的是,全球最顶尖的精英正在抛弃互联网,转向人工智能——斯坦福、麻省理工、卡内基梅隆、伯克利四所名校人工智能专业的博士生第一份offer已经可以拿到200-300万美金。这种情况历史上从来没有发生过。

奇点大学(谷歌、美国国家航天航空局以及若干科技界专家联合建立)的校长库兹韦尔则抱有更乐观的估计,他相信电脑会在2029年达成强人工智能,到2045年,进入超人工智能时代。
所以,如果你觉得你还能活30、40年的话,那你应该能见证超人工智能的出现。