人工智能研究成果
A. 中国科学家在人工智能研究上基础取得的哪些重要成果
你好:
《自然》(Nature)期刊发表的一篇文章,从论文影响力、核心应用、硬件、人才等方面,详细地对中国当前的AI发展现状进行了分析。
2017年,我国制定了《新一代人工智能发展规划》,描绘了未来十几年我国人工智能发展的宏伟蓝图,确立了 “三步走” 目标:
到 2020 年人工智能总体技术和应用与世界先进水平同步;
到 2025 年人工智能基础理论实现重大突破、技术与应用部分达到世界领先水平;
到 2030 年人工智能理论、技术与应用总体达到世界领先水平,成为世界主要人工智能创新中心。
随着第一个期限、2020年的临近,中国的人工智能发展到什么程度了呢?
研究人员注意到,中国的AI研究的质量出现了令人印象深刻的飞跃,他们还预测,中国留住本土人才的能力将发生转变。
但观察人士警告称,有几个因素可能阻碍中国的计划,包括缺乏对开发支撑该领域的工具的理论的贡献,以及中国企业不愿投资于实现根本性突破所需的研究。
科学家们表示,中国对人工智能的追求不仅仅是与美国的一场国力竞赛。人工智能技术有望在医疗、交通和通信领域取得进步,在该领域取得根本性突破的国家可能会决定其未来的方向,并从中获得最大的利益。
“毫无疑问,中国将人工智能视为这个时代的关键技术之一,并希望与美国匹敌,”在英国牛津大学人类未来研究所研究中国人工智能发展的Jeffrey Ding表示。
在2017年《新一代人工智能发展规划》发布之后,促进了更多政策的出台,以及来自部委、省级政府和私营企业的数十亿美元的研发投资。
中国AI研究质量提升,核心技术落后
一项对学术搜索引擎微软学术(Microsoft Academic)收录的人工智能论文的分析显示,中国正朝着产生重大影响的方向稳步前进。这项由艾伦人工智能研究所进行的分析发现,在被引用最多的前10%的论文中,中国的作者比例稳步上升。其份额在2018年达到了26.5%的峰值,与美国的29%相差不远,而美国的份额正在下降。如果这一趋势继续下去,中国明年在这个指标上可能会超过美国。其他分析显示,中国人工智能论文的平均引用量一直在稳步增长,高于世界平均水平,但低于美国作者的论文。
很多计算机科学家在美国接受高等教育,然后留在那里为全球性科技公司工作。
然而,有迹象表明,情况正在发生变化。中国的人工智能研究机构正试图以高薪吸引其中一些研究人员回国。例如,在郑南宁的机器人中心,一些教授的工资是大学其他教授的2-3倍,他说。
郑南宁说,该中心还为员工提供了一个比中国许多大学更为全面的评估体系,相比其他标准,中国的大学往往会奖励高发表率。他还实施了一个招聘系统,绕过了大学的集中程序,允许科学家快速组建工程师团队,目前正在开设人工智能的本科课程。
中国部署应用环境得天独厚
Ding表示,考虑到腾讯、网络和阿里巴巴这三家核心科技公司日益增长的专业技能,中国到2020年拥有全球领先的人工智能公司的计划也是可以实现的。他说:“这些公司已成为人工智能领域的全球领导者,尽管它们仍未达到谷歌和微软等美国公司的水平。”
CB Insights的数据显示,中国至少还有10家估值超过10亿美元的私营AI初创企业。
中国的一大优势是其人口规模,这为训练AI系统创造了巨大的潜在劳动力和独特的机会,包括用于训练预测疾病的软件的大型患者数据集。今年2月,中国研究人员表示,他们的NLP系统能够从电子健康记录中诊断出常见的儿童疾病,其准确性堪比经验丰富的儿科医生。该数据集包括了近60万访问一家医院的儿童病历数据;在许多其他国家,获取这么多数据是十分困难的。
中国AI治理原则初现
如果中国要在人工智能领域拥有全球影响力,同样重要的是,必须要有适当的治理,因为这将允许中国的研究人员和公司建立必要的信任来赢得世界各地的用户,以及建立与其他国家的研究人员的合作。
与许多国家一样,中国已经开始为开发和使用人工智能制定伦理原则。今年6月,全国新一代人工智能治理委员会发布了人工智能开发的八大治理原则,包括和谐友好、公平公正、包容共享、尊重隐私、安全可控、共担责任、开放协作、敏捷治理,这与经济合作与发展组织(OECD)今年5月发布的措施类似。
总结而言,中国的人工智能研究质量越来越高,应用和部署AI的环境得天独厚,吸引和留下人才的能力正在提升,但在高影响力的论文,人才和道德规范方面,中国仍在追赶美国。
B. 我们的现实生活中,可能存在哪些人工智能的应用成果
人工智能是近年来引起大家很大兴趣的一个领域:它的研究方向是用机器,通常为电子仪器、电脑等,尽可能地自拟人的精神活动,并且争取在这些方面最终改善并超出人的能耐;其研究领域及应用范围十分广泛、例如,电子定理证明、推理、模式识别、权威知识系统、智能机器人、学习、博彩、自然语言理解等等。
模式识别可能是人工智能这门学科中最基本也是最重要的一部分。简单来说,模式识别根本就是让电脑能够认识它周围的事物,使我们与电脑的沟通更加自然与方便。它包括字词识别(读)、语音识别(听)、语音合成(说)、自然语言理解与电脑图形识别。现在的电脑可以说是又耸又哑,而且还得个瞎子,如果模式识别技能能够得到充分发展并应用于电脑,那我们就能够很自然地与电脑进行沟通,开也不需要记那些英语的命令就可以立接向电脑下命令。这也为智能机器人的研究给予了必要要求,它能使机器人能够像人相同与外面的世纪进行沟通。
在人工智能的应用当中最有趣的应该根本就是机器人了其实机器人的范围很广,不仅包括各种外型的智能机器人,还包括一些用于工业生产的、用于代替人类劳动的机器人、现在的机器人技能在制造只有某一种功能的机器人方面已经取得了一定的成果、但是要研制一种多功能、人性化的智能机器人,还需要不少时间。到了那时,我们在科幻片中看到的人类与机器人的矛盾不知会不会成为现实。
权威系统具有一定的商业特性、它先把某一种行业(譬如医学、法律等等)的主要知识都输入到电脑的系统知识库里,再由设计者根据这些知识之间的特有关系和职业人员的历练,设计出一个系统,这个系统不仅能够为使用者给予这个行业知识的查询、建议等效劳,更重要的是作为一个人工智能系统、必须具有电子推理、学习的能耐。权威系统经常应用于各种商业用途,例如单位内部的客户息系统,决策支持系统,以及我们在世面上可以看见的医学顾问、法津顾问等软件。
除此之外,在我们生活中的许多地方都能找到人工智能的影子。例如许多家用电器里都有智能芯片,汽车、飞机的夺航系统,电动游或里的人工专能程序,以及某些特制的能够帮忙人的电子产品。
C. 什么是人工智能 人工智能定义 人工智能主要成果
人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。 人工智能的定义可以分为两部分,即“人工”和“智能”。“人工”比较好理解,争议性也不大。人工智能的研究往往涉及对人的智能本身的研究。主要成果为人机对弈、模式识别、自动工程、知识工程、专家系统、智能搜索引擎、计算机视觉和图像处理、机器翻译和自然语言理解、数据挖掘和知识发现。
D. 1 人工智能的研究领域具体包含哪些是机器人和算法吗还有没有其他
人工智能(Artificial Intelligence) ,英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。 人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。“人工智能”一词最初是在1956 年Dartmouth学会上提出的。从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展。人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。例如繁重的科学和工程计算本来是要人脑来承担的,现在计算机不但能完成这种计算, 而且能够比人脑做得更快、更准确,因之当代人已不再把这种计算看作是“需要人类智能才能完成的复杂任务”, 可见复杂工作的定义是随着时代的发展和技术的进步而变化的, 人工智能这门科学的具体目标也自然随着时代的变化而发展。它一方面不断获得新的进展,一方面又转向更有意义、更加困难的目标。目前能够用来研究人工智能的主要物质手段以及能够实现人工智能技术的机器就是计算机, 人工智能的发展历史是和计算机科学与技术的发展史联系在一起的。除了计算机科学以外, 人工智能还涉及信息论、控制论、自动化、仿生学、生物学、心理学、数理逻辑、语言学、医学和哲学等多门学科。人工智能学科研究的主要内容包括:知识表示、自动推理和搜索方法、机器学习和知识获取、知识处理系统、自然语言理解、计算机视觉、智能机器人、自动程序设计等方面。
[编辑本段]【人工和智能】
人工智能的定义可以分为两部分,即“人工”和“智能”。“人工”比较好理解,争议性也不大。有时我们会要考虑什么是人力所能及制造的,或着人自身的智能程度有没有高到可以创造人工智能的地步,等等。但总的来说,“人工系统”就是通常意义下的人工系统。
关于什么是“智能”,就问题多多了。这涉及到其它诸如意识(consciousness)、自我(self)、思维(mind)(包括无意识的思维(unconscious_mind)等等问题。人唯一了解的智能是人本身的智能,这是普遍认同的观点。但是我们对我们自身智能的理解都非常有限,对构成人的智能的必要元素也了解有限,所以就很难定义什么是“人工”制造的“智能”了。因此人工智能的研究往往涉及对人的智能本身的研究。其它关于动物或其它人造系统的智能也普遍被认为是人工智能相关的研究课题。
人工智能目前在计算机领域内,得到了愈加广泛的重视。并在机器人,经济政治决策,控制系统,仿真系统中得到应用。
[编辑本段]【人工智能的定义】
著名的美国斯坦福大学人工智能研究中心尼尔逊教授对人工智能下了这样一个定义:“人工智能是关于知识的学科――怎样表示知识以及怎样获得知识并使用知识的科学。”而另一个美国麻省理工学院的温斯顿教授认为:“人工智能就是研究如何使计算机去做过去只有人才能做的智能工作。”这些说法反映了人工智能学科的基本思想和基本内容。即人工智能是研究人类智能活动的规律,构造具有一定智能的人工系统,研究如何让计算机去完成以往需要人的智力才能胜任的工作,也就是研究如何应用计算机的软硬件来模拟人类某些智能行为的基本理论、方法和技术。
人工智能(Artificial Intelligence,简称AI)是计算机学科的一个分支,二十世纪七十年代以来被称为世界三大尖端技术之一(空间技术、能源技术、人工智能)。也被认为是二十一世纪(基因工程、纳米科学、人工智能)三大尖端技术之一。这是因为近三十年来它获得了迅速的发展,在很多学科领域都获得了广泛应用,并取得了丰硕的成果,人工智能已逐步成为一个独立的分支,无论在理论和实践上都已自成一个系统。
人工智能是研究使计算机来模拟人的某些思维过程和智能行为(如学习、推理、思考、规划等)的学科,主要包括计算机实现智能的原理、制造类似于人脑智能的计算机,使计算机能实现更高层次的应用。人工智能将涉及到计算机科学、心理学、哲学和语言学等学科。可以说几乎是自然科学和社会科学的所有学科,其范围已远远超出了计算机科学的范畴,人工智能与思维科学的关系是实践和理论的关系,人工智能是处于思维科学的技术应用层次,是它的一个应用分支。从思维观点看,人工智能不仅限于逻辑思维,要考虑形象思维、灵感思维才能促进人工智能的突破性的发展,数学常被认为是多种学科的基础科学,数学也进入语言、思维领域,人工智能学科也必须借用数学工具,数学不仅在标准逻辑、模糊数学等范围发挥作用,数学进入人工智能学科,它们将互相促进而更快地发展。
[编辑本段]【实际应用】
机器视觉:指纹识别,人脸识别,视网膜识别,虹膜识别,掌纹识别,专家系统,智能搜索,定理证明,博弈,自动程序设计,还有航天应用等。
[编辑本段]【学科范畴】
人工智能是一门边沿学科,属于自然科学和社会科学的交叉。
[编辑本段]【涉及学科】
哲学和认知科学,数学,神经生理学,心理学,计算机科学,信息论,控制论,不定性论,仿生学,
[编辑本段]【研究范畴】
自然语言处理,知识表现,智能搜索,推理,规划,机器学习,知识获取,组合调度问题,感知问题,模式识别,逻辑程序设计,软计算,不精确和不确定的管理,人工生命,神经网络,复杂系统,遗传算法
[编辑本段]【应用领域】
智能控制,机器人学,语言和图像理解,遗传编程
[编辑本段]【意识和人工智能的区别】
人工智能就其本质而言,是对人的思维的信息过程的模拟。
对于人的思维模拟可以从两条道路进行,一是结构模拟,仿照人脑的结构机制,制造出“类人脑”的机器;二是功能模拟,暂时撇开人脑的内部结构,而从其功能过程进行模拟。现代电子计算机的产生便是对人脑思维功能的模拟,是对人脑思维的信息过程的模拟。
人工智能不是人的智能,更不会超过人的智能。
“机器思维”同人类思维的本质区别:
1.人工智能纯系无意识的机械的物理的过程,人类智能主要是生理和心理的过程。
2.人工智能没有社会性。
3.人工智能没有人类的意识所特有的能动的创造能力。
4.两者总是人脑的思维在前,电脑的功能在后。
[编辑本段]【强人工智能和弱人工智能】
人工智能的一个比较流行的定义,也是该领域较早的定义,是由约翰·麦卡锡(John McCarthy|)在1956年的达特矛斯会议(Dartmouth Conference)上提出的:人工智能就是要让机器的行为看起来就象是人所表现出的智能行为一样。但是这个定义似乎忽略了强人工智能的可能性(见下)。另一个定义指人工智能是人造机器所表现出来的智能性。总体来讲,目前对人工智能的定义大多可划分为四类,即机器“像人一样思考”、“像人一样行动”、“理性地思考”和“理性地行动”。这里“行动”应广义地理解为采取行动,或制定行动的决策,而不是肢体动作。
强人工智能
强人工智能观点认为有可能制造出真正能推理(Reasoning)和解决问题(Problem_solving)的智能机器,并且,这样的机器能将被认为是有知觉的,有自我意识的。强人工智能可以有两类:
类人的人工智能,即机器的思考和推理就像人的思维一样。
非类人的人工智能,即机器产生了和人完全不一样的知觉和意识,使用和人完全不一样的推理方式。
弱人工智能
弱人工智能观点认为不可能制造出能真正地推理(Reasoning)和解决问题(Problem_solving)的智能机器,这些机器只不过看起来像是智能的,但是并不真正拥有智能,也不会有自主意识。
主流科研集中在弱人工智能上,并且一般认为这一研究领域已经取得可观的成就。强人工智能的研究则出于停滞不前的状态下。
对强人工智能的哲学争论
“强人工智能”一词最初是约翰·罗杰斯·希尔勒针对计算机和其它信息处理机器创造的,其定义为:
“强人工智能观点认为计算机不仅是用来研究人的思维的一种工具;相反,只要运行适当的程序,计算机本身就是有思维的。”(J Searle in Minds Brains and Programs. The Behavioral and Brain Sciences, vol. 3, 1980)这是指使计算机从事智能的活动。在这里智能的涵义是多义的、不确定的,象下面所提到的就是其中的例子。利用计算机解决问题时,必须知道明确的程序。可是,人即使在不清楚程序时,根据发现(heu- ristic)法而设法巧妙地解决了问题的情况是不少的。如识别书写的文字、图形、声音等,所谓认识模型就是一例。再有,能力因学习而得到的提高和归纳推理、依据类推而进行的推理等,也是其例。此外,解决的程序虽然是清楚的,但是实行起来需要很长时间,对于这样的问题,人能在很短的时间内找出相当好的解决方法,如竞技的比赛等就是其例。还有,计算机在没有给予充分的合乎逻辑的正确信息时,就不能理解它的意义,而人在仅是被给予不充分、不正确的信息的情况下,根据适当的补充信息,也能抓住它的意义。自然语言就是例子。用计算机处理自然语言,称为自然语言处理。
关于强人工智能的争论不同于更广义的一元论和二元论(alism)的争论。其争论要点是:如果一台机器的唯一工作原理就是对编码数据进行转换,那么这台机器是不是有思维的?希尔勒认为这是不可能的。他举了个中文房间的例子来说明,如果机器仅仅是对数据进行转换,而数据本身是对某些事情的一种编码表现,那么在不理解这一编码和这实际事情之间的对应关系的前提下,机器不可能对其处理的数据有任何理解。基于这一论点,希尔勒认为即使有机器通过了图灵测试,也不一定说明机器就真的像人一样有思维和意识。
也有哲学家持不同的观点。Daniel C. Dennett 在其著作 Consciousness Explained 里认为,人也不过是一台有灵魂的机器而已,为什么我们认为人可以有智能而普通机器就不能呢?他认为像上述的数据转换机器是有可能有思维和意识的。
有的哲学家认为如果弱人工智能是可实现的,那么强人工智能也是可实现的。比如Simon Blackburn在其哲学入门教材 Think 里说道,一个人的看起来是“智能”的行动并不能真正说明这个人就真的是智能的。我永远不可能知道另一个人是否真的像我一样是智能的,还是说她/他仅仅是看起来是智能的。基于这个论点,既然弱人工智能认为可以令机器看起来像是智能的,那就不能完全否定这机器是真的有智能的。Blackburn 认为这是一个主观认定的问题。
需要要指出的是,弱人工智能并非和强人工智能完全对立,也就是说,即使强人工智能是可能的,弱人工智能仍然是有意义的。至少,今日的计算机能做的事,像算术运算等,在百多年前是被认为很需要智能的。
[编辑本段]【人工智能简史】
人工智能的传说可以追溯到古埃及,但随着1941年以来电子计算机的发展,技术已最终可以创造出机器智能,“人工智能”(Artificial Intelligence)一词最初是在1956年Dartmouth学会上提出的,从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展,在它还不长的历史中,人工智能的发展比预想的要慢,但一直在前进,从40年前出现到现在,已经出现了许多AI程序,并且它们也影响到了其它 技术的发展。
计算机时代
1941年的一项发明使信息存储和处理的各个方面都发生了革命.这项同时在美国和德国出现的 发明就是电子计算机.第一台计算机要占用几间装空调的大房间,对程序员来说是场恶梦:仅仅为运行一 个程序就要设置成千的线路.1949年改进后的能存储程序的计算机使得输入程序变得简单些,而且计算机 理论的发展产生了计算机科学,并最终促使了人工智能的出现.计算机这个用电子方式处理数据的发明, 为人工智能的可能实现提供了一种媒介.
AI的开端
虽然计算机为AI提供了必要的技术基础,但直到50年代早期人们才注意到人类智能与机器之间 的联系. Norbert Wiener是最早研究反馈理论的美国人之一.最熟悉的反馈控制的例子是自动调温器.它 将收集到的房间温度与希望的温度比较,并做出反应将加热器开大或关小,从而控制环境温度.这项对反馈 回路的研究重要性在于: Wiener从理论上指出,所有的智能活动都是反馈机制的结果.而反馈机制是有可 能用机器模拟的.这项发现对早期AI的发展影响很大.
1955年末,Newell和Simon做了一个名为"逻辑专家"(Logic Theorist)的程序.这个程序被许多人 认为是第一个AI程序.它将每个问题都表示成一个树形模型,然后选择最可能得到正确结论的那一枝来求解 问题."逻辑专家"对公众和AI研究领域产生的影响使它成为AI发展中一个重要的里程碑.1956年,被认为是 人工智能之父的John McCarthy组织了一次学会,将许多对机器智能感兴趣的专家学者聚集在一起进行了一 个月的讨论.他请他们到 Vermont参加 " Dartmouth人工智能夏季研究会".从那时起,这个领域被命名为 "人工智能".虽然 Dartmouth学会不是非常成功,但它确实集中了AI的创立者们,并为以后的AI研究奠定了基础.
Dartmouth会议后的7年中,AI研究开始快速发展.虽然这个领域还没明确定义,会议中的一些思想 已被重新考虑和使用了. Carnegie Mellon大学和MIT开始组建AI研究中心.研究面临新的挑战: 下一步需 要建立能够更有效解决问题的系统,例如在"逻辑专家"中减少搜索;还有就是建立可以自我学习的系统.
1957年一个新程序,"通用解题机"(GPS)的第一个版本进行了测试.这个程序是由制作"逻辑专家" 的同一个组开发的.GPS扩展了Wiener的反馈原理,可以解决很多常识问题.两年以后,IBM成立了一个AI研 究组.Herbert Gelerneter花3年时间制作了一个解几何定理的程序.
当越来越多的程序涌现时,McCarthy正忙于一个AI史上的突破.1958年McCarthy宣布了他的新成 果: LISP语言. LISP到今天还在用."LISP"的意思是"表处理"(LISt Processing),它很快就为大多数AI开发者点赞.
1963年MIT从美国政府得到一笔220万美元的资助,用于研究机器辅助识别.这笔资助来自国防部 高级研究计划署(ARPA),已保证美国在技术进步上领先于苏联.这个计划吸引了来自全世界的计算机科学家, 加快了AI研究的发展步伐.
大量的程序
以后几年出现了大量程序.其中一个著名的叫"SHRDLU"."SHRDLU"是"微型世界"项目的一部分,包括 在微型世界(例如只有有限数量的几何形体)中的研究与编程.在MIT由Marvin Minsky领导的研究人员发现, 面对小规模的对象,计算机程序可以解决空间和逻辑问题.其它如在60年代末出现的"STUDENT"可以解决代数 问题,"SIR"可以理解简单的英语句子.这些程序的结果对处理语言理解和逻辑有所帮助.
70年代另一个进展是专家系统.专家系统可以预测在一定条件下某种解的概率.由于当时计算机已 有巨大容量,专家系统有可能从数据中得出规律.专家系统的市场应用很广.十年间,专家系统被用于股市预 测,帮助医生诊断疾病,以及指示矿工确定矿藏位置等.这一切都因为专家系统存储规律和信息的能力而成为可能.
70年代许多新方法被用于AI开发,著名的如Minsky的构造理论.另外David Marr提出了机器视觉方 面的新理论,例如,如何通过一副图像的阴影,形状,颜色,边界和纹理等基本信息辨别图像.通过分析这些信 息,可以推断出图像可能是什么.同时期另一项成果是PROLOGE语言,于1972年提出. 80年代期间,AI前进更为迅速,并更多地进入商业领域.1986年,美国AI相关软硬件销售高达4.25亿 美元.专家系统因其效用尤受需求.象数字电气公司这样的公司用XCON专家系统为VAX大型机编程.杜邦,通用 汽车公司和波音公司也大量依赖专家系统.为满足计算机专家的需要,一些生产专家系统辅助制作软件的公 司,如Teknowledge和Intellicorp成立了。为了查找和改正现有专家系统中的错误,又有另外一些专家系统被设计出来.
从实验室到日常生活
人们开始感受到计算机和人工智能技术的影响.计算机技术不再只属于实验室中的一小群研究人员. 个人电脑和众多技术杂志使计算机技术展现在人们面前.有了象美国人工智能协会这样的基金会.因为AI开发 的需要,还出现了一阵研究人员进入私人公司的热潮。150多所像DEC(它雇了700多员工从事AI研究)这样的公司共花了10亿美元在内部的AI开发组上.
其它一些AI领域也在80年代进入市场.其中一项就是机器视觉. Minsky和Marr的成果现在用到了生产线上的相机和计算机中,进行质量控制.尽管还很简陋,这些系统已能够通过黑白区别分辨出物件形状的不同.到1985年美国有一百多个公司生产机器视觉系统,销售额共达8千万美元.
但80年代对AI工业来说也不全是好年景.86-87年对AI系统的需求下降,业界损失了近5亿美元.象 Teknowledge和Intellicorp两家共损失超过6百万美元,大约占利润的三分之一巨大的损失迫使许多研究领 导者削减经费.另一个另人失望的是国防部高级研究计划署支持的所谓"智能卡车".这个项目目的是研制一种能完成许多战地任务的机器人。由于项目缺陷和成功无望,Pentagon停止了项目的经费.
尽管经历了这些受挫的事件,AI仍在慢慢恢复发展.新的技术在日本被开发出来,如在美国首创的模糊逻辑,它可以从不确定的条件作出决策;还有神经网络,被视为实现人工智能的可能途径.总之,80年代AI被引入了市场,并显示出实用价值.可以确信,它将是通向21世纪之匙. 人工智能技术接受检验 在"沙漠风暴"行动中军方的智能设备经受了战争的检验.人工智能技术被用于导弹系统和预警显示以 及其它先进武器.AI技术也进入了家庭.智能电脑的增加吸引了公众兴趣;一些面向苹果机和IBM兼容机的应用 软件例如语音和文字识别已可买到;使用模糊逻辑,AI技术简化了摄像设备.对人工智能相关技术更大的需求促 使新的进步不断出现.人工智能已经并且将继续不可避免地改变我们的生活.
E. 人工智能的主要成果有哪些
1996年2月10~17日, GARRY KASPAROV以4:2战胜“深蓝” (DEEP BLUE)。
1997年5月3~11日, GARRY KASPAROV以2.5:3.5输于改进后的“深蓝”。
2003年2月GARRY KASPAROV 3:3战平 “小深”(DEEP JUNIOR)。
2003年11月GARRY KASPAROV 2:2战平 “X3D德国人” (X3D-FRITZ)。 采用 $模式识别引擎,分支有2D识别引擎 ,3D识别引擎,驻波识别引擎以及多维识别引擎
2D识别引擎已推出指纹识别,人像识别 ,文字识别,图像识别 ,车牌识别;驻波识别引擎已推出语音识别;3D识别引擎已推出指纹识别玉带林中挂(玩游智能版1.25) 自动驾驶(OSO系统)
印钞工厂(¥流水线)
猎鹰系统(YOD绘图) 以知识本身为处理对象,研究如何运用人工智能和软件技术,设计、构造和维护知识系统
专家系统
智能搜索引擎
计算机视觉和图像处理
机器翻译和自然语言理解
数据挖掘和知识发现
F. 中国科学家在人工智能,研究上取得了哪些重要成果
人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。 人工智能亦称智械、机器智能,指由人制造出来的机器所表现出来的智能。通常人工智能是指通过普通计算机程序来呈现人类智能的技术。通过医学、神经科学、机器人学及统计学等的进步,有些预测则认为人类的无数职业也逐渐被人工智能取代。中国人工智能论文总量和高被引论文数量都是世界第一。在产业发展和市场应用方面,中国人工智能企业数量全球第二。从政策环境来看,中国人工智能政策主要关注中国制造、创新驱动、物联网、互联网+、大数据和科技研发,且聚焦于实现人工智能领域产业化。中国人工智能发展虽已进入国际领先集团,但还存在核心技术领域薄弱、顶尖人才缺乏、企业知识生产能力弱,以及重技术发展和产业进步而轻社会影响和道德伦理研究等突出问题。
G. 人工智能领域最新研究有哪些
【经典的人工智能成果】
人机对弈
1996年2月10~17日, Garry Kasparov以内4:2战胜“深蓝”容 (Deep Blue)。
1997年5月3~11日, Garry Kasparov以3.5:2.5输于改进后的“深蓝” 。
2003年2月Garry Kasparov 3:3战平 “小深”(Deep Junior)。
2003年11月Garry Kasparov 2:2战平 “X3D德国人” (X3D-Fritz )。
模式识别
指纹识别
人脸识别
语音识别
文字识别
图像识别
车牌识别
知识工程
以知识本身为处理对象,研究如何运用人工智能和软件技术,设计、构造和维护知识系统
专家系统
智能搜索引擎
计算机视觉和图像处理
机器翻译和自然语言理解
数据挖掘和知识发现
H. 人工智能领域主要取得了哪些成果
人工智能是近年来引起人们很大兴趣的一个领域:它的研究目标是用机器,通常为电子仪器、电脑等,尽可能地模拟人的精神活动,并且争取在这些方面最终改善并超出人的能力;其研究领域及应用范围十分广泛、例如,自动定理证明、推理、模式识别、专家知识系统、智能机器人、学习、博彩、自然语言理解等等。
模式识别可能是人工智能这门学科中最基本也是最重要的一部分。简单来说,模式识别就是让电脑能够认识它周围的事物,使我们与电脑的交流更加自然与方便。它包括文字识别(读)、语音识别(听)、语音合成(说)、自然语言理解与电脑图形识别。现在的电脑可以说是又耸又哑,而且还是个瞎子,如果模式识别技术能够得到充分发展并应用于电脑,那我们就能够很自然地与电脑进行交流,开也不需要记那些英文的命令就可以立接向电脑下命令。这也为智能机器人的研究提供了必要条件,它能使机器人能够像人一样与外面的世界进行交流。
在人工智能的应用当中最有趣的应该就是机器人了其实机器人的范围很广,不仅包括各种外型的智能机器人,还包括一些用于工业生产的、用于代替人类劳动的机器人、现在的机器人技术在制造只有某一种功能的机器人方面已经取得了一定的成果、但是要研制一种多功能、人性化的智能机器人,还需要不少时间。到了那时,我们在科幻片中看到的人类与机器人的矛盾不知会不会成为现实。专家系统具有一定的商业特性、它先把某一种行业(譬如医学、法律等等)的主要知识都输入到电脑的系统知识库里,再由设计者根据这些知识之间的特有关系和职业人员的经验,设计出一个系统,这个系统不仅能够为使用者提供这个行业知识的查询、建议等服务,更重要的是作为一个人工智能系统、必须具有自动推理、学习的能力。专家系统经常应用于各种商业用途,例如企业内部的客户息系统,决策支持系统,以及我们在世面上可以看见的医学顾问、法津顾问等软件。
除此之外,在我们生活中的许多地方都能找到人工智能的影子。
I. 人工智能的主要成果
1996年2月10~17日, GARRY KASPAROV以4:2战胜“深蓝” (DEEP BLUE)。
1997年5月3~11日, GARRY KASPAROV以2.5:3.5输于改进后的“深蓝”。
2003年2月GARRY KASPAROV 3:3战平 “小深”(DEEP JUNIOR)。
2003年11月GARRY KASPAROV 2:2战平 “X3D德国人” (X3D-FRITZ)。 采用 $模式识别引擎,分支有2D识别引擎 ,3D识别引擎,驻波识别引擎以及多维识别引擎
2D识别引擎已推出指纹识别,人像识别 ,文字识别,图像识别 ,车牌识别;驻波识别引擎已推出语音识别;3D识别引擎已推出指纹识别玉带林中挂(玩游智能版1.25) 自动驾驶(OSO系统)
印钞工厂(¥流水线)
猎鹰系统(YOD绘图) 以知识本身为处理对象,研究如何运用人工智能和软件技术,设计、构造和维护知识系统
专家系统
智能搜索引擎
计算机视觉和图像处理
机器翻译和自然语言理解
数据挖掘和知识发现
J. 同盾科技人工智能研究院是做什么的有什么研究成果吗
同盾人工智能研究院又称为人工智能的“贝尔实验室”。是去年创立的,主要是人工专智能研究院为核心载属体,稳步推动人工智能战略的布局和实施。探索机器学习、深度学习基础理论算法,进行计算机视觉,语音语言处理,联邦学习等人工智能核心技术的深入研究,并将智能应用推向市场。
同盾人工智能研究院院长是由美国公立常春藤名校佛罗里达大学的终身教授李晓林担任。
《知识联邦白皮书》、元知识联邦技术、文档图像质量评估框架和文本行图像质量数据合成技术都是同盾人工智能研究院研究成果。