大数据可视化架构
『壹』 什么是大数据可视化
基本概念:
1.数据空间
数据空间是由n维属性和m个元素组成的数据集所构成的多维信息空间。
2.数据开发
数据开发是指利用一定的算法和工具对数据进行定量的推演和计算。
3.数据分析
数据分析指对多维数据进行切片、块、旋转等动作剖析数据,从而能多角度多侧面观察数据。
4.数据可视化
数据可视化是指将大型数据集中的数据以图形图像形式表示,并利用数据分析和开发工具发现其中未知信息的处理过程。
数据可视化优点:
1.接受更快
人脑对视觉信息的处理要比书面信息容易得多。使用图表来总结复杂的数据,可以确保对关系的理解要比那些混乱的报告或电子表格更快。节省接受时间。
2.增强互动
数据可视化的主要好处是它及时带来了风险变化。与静态图表不同,可视化的应用可以是流动性的操作,更有力的了解数据信息。
3.强化关联
数据可视化的应用可以使数据之间的各种联系方式紧密关联。以数据图表的形式描绘各组数据之间的联系。
4.美化数据
可视化从视觉的角度来描绘数据,可根据技术工具对数据的表现形式进行美化,以达到观看数据的同时对于视觉也是一种享受的效果。
关于什么是大数据可视化,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
『贰』 大数据的时代 什么叫数据可视化
基于数据的可视化形式有:视觉暗示、坐标系、标尺、背景信息以及前面四种形式的任意组合。
(1)视觉暗示:
是指通过查看图表就可以与潜意识中的意识进行联系从而得出图表表达的意识。常用的视觉暗示主要有:位置(位置高低)、长度(长短)、角度(大小)、方向(方向上升还是下降)、形状(不同形状代表不同分类)、面积(面积大小)、体积(体积大小)、饱和度(色调的强度,就是颜色的深浅)、色调(不同颜色)。
(2)坐标系:
这里的坐标系和我们之前数学中学到的坐标系是相同的,只不过坐标轴的意义可能稍有不同。常见的坐标系种类有:直角坐标系、极坐标系和地理坐标系。
大家对直角坐标系、极坐标系比较熟悉,这里说一下地理坐标系。
地理坐标系是使用三维球面来定义地球表面位置,以实现通过经纬度对地球表面点位引用的坐标系。但是我们在进行数据可视化的时候一般用投影的方法把其从三维数据转化成二维的平面图形。
(3)标尺:
前面说到的三种坐标系只是定义了展示数据的维度和方向,而标尺的作用是用来衡量不同方向和维度上的大小,其实和我们熟悉的刻度挺像。
(4)背景信息:
此处的背景和我们在语文中学习到的背景是一个概念,是为了说明数据的相关信息(who、what、when、where、why),使数据更加清晰,便于读者更好的理解。
(5)组合组件:
组合组件就是根据目标用途将上面四种信息进行组合。
『叁』 大数据可视化和大数据开发哪个好
大数据开发的学习内容中包含可视化,掌握了大数据的开发技术,也可以从事可视化的相关工作。
基础阶段:Linux、Docker、KVM、MySQL基础、Oracle基础、MongoDB、redis。
hadoop maprece hdfs yarn:hadoop:Hadoop 概念、版本、历史,HDFS工作原理,YARN介绍及组件介绍。
大数据存储阶段:hbase、hive、sqoop。
大数据架构设计阶段:Flume分布式、Zookeeper、Kafka。
大数据实时计算阶段:Mahout、Spark、storm。
大数据数据采集阶段:Python、Scala。
大数据商业实战阶段:实操企业大数据处理业务场景,分析需求、解决方案实施,综合技术实战应用。
大数据技术人员的就业方向:大数据系统研发类人才、大数据应用开发类人才和大数据分析类人才。
工作岗位:ETL研发、Hadoop开发、可视化(前端展现)工具开发、信息架构开发、数据仓库研究、OLAP开发、数据预测(数据挖掘)分析、企业数据管理、数据安全研究、数据科学研究等。
『肆』 大数据的数据可视化是什么样的
DCV作为新一代数据中心可视化管理平台,让管理人员可以清晰直观地掌握IT运营中的有效信息,实现透明化与可视化管理,进而有效提升资产管理与监控管理的效率,实现立体式、可视化的新一代数据中心运行管理网页链接
CampusBuilder (模模搭)提供了一个完整的、 网络化、 可视化的三维虚拟环境设计编辑平台,操作简便,高效易用,用户可使用鼠标拖动的方式绘制各种结构及添加各种对象模型,即可立即创建数据中心机房的三维模型,还可以导入机房CAD图纸辅助绘制,用户可快速高效地设计数据中心机房,实现房间结构生成、装饰调整、设备摆放和场景创建的工作,生成实际可用的数据中心三维虚拟仿真场景。
1、环境可视化
沙盘、展板、图纸等传统管理手段缺乏交互性,吸引力弱,信息传递效果不佳。Tarsier的环境可视化管理采用3D虚拟仿真技术,实现数据中心的园区、楼宇、机房等环境的可视化浏览,清晰完整地展现整个数据中心。同时配合监控可视化模块,可以与安防、消防、楼宇自控等系统集成,为以上系统提供可视化管理手段,实现数据中心园区环境的跨系统集中管理,提高对数据中心园区的掌控能力和管理效率。
功能特性:
地理园区的虚拟仿真、建筑外观的虚拟仿真、建筑内部结构的虚拟仿真。
2、
管线可视化
通过传统的平面图纸和跳线表方式难以看清密集管线的信息。Tarsier的管线可视化管理以3D可视化手段梳理数据中心日益密集的电气管道与网络线路,让数据中心运维人员从平面图纸及跳线表格中解脱出来,更加直观地掌握数据中心的管线分布及走线情况,从而快速排查及修复管线类故障,提高管线管理水平和故障解决效率。
功能特性:
园区管网3D可视化、建筑电气管路3D可视化、建筑空调管路3D可视化、机房设备布线3D可视化。
3、资产可视化
数据中心内设备资产数量庞大,种类众多,传统的列表式管理方式效率低、实用性差。Tarsier的资产可视化管理模块采用创新的三维互动技术实 现对数据中心资产配置信息的可视化管理,可与各类IT资产配置管理数据库集成,也支持各种资产台账表格直接导入,让呆板的资产和配置数据变得鲜 活易用,大大提升了资产数据的实用性和易用性。
功能特性:
分级浏览可视化、设备上下架3D可视化、全设备虚拟仿真、快速模糊查询、强大模型库支持。
4、容量可视化
传统管理软件对机房容量情况缺乏有效的信息检索手段,查询困难。Tarsier的容量可视化管理模块提供以机柜为单位的数据中心容量管理,以树形结构和3D可视化展现两种方式全面表现机房和机柜整体使用情况,对于空间容量、电力容量、承重容量等进行精确统计和展现,帮助运维人员高效的管理机房的容量资源,让机房各类资源的负荷更加均衡,提升数据中心资源使用效率。
功能特性:
地理园区的虚拟仿真、建筑外观的虚拟仿真、建筑内部结构的虚拟仿真。
5、监控可视化
监控可视化管理整合数据中心内各种专业监控工具(如动环监控、安防监控、网络监控、主机监控、应用监控等),把多种监控数据融为一体,建立统一监控窗口,解决监控数据孤岛问题,实现监控工具、监控数据的价值最大化。同时,基于T3D图形引擎强大的可视化能力,提供丰富的可视化手段,扭转由于二维信息维度不足而导致的数据与报表泛滥状况,切实提升监控管理水平。
功能特性:
门禁监控集成、视频监控集成、消防监控集成、环境监控集成、配电监控集成、制冷监控集成、设备统一告警展示。
6、演示可视化
PPT介绍、动画录像等传统汇报方式枯燥单调、真实感不强。Tarsier的演示可视化管理借助T3D图形引擎提供的虚拟线路和可视化展示等强大功能,满足数据中心基础设施多样化的展示需求,如逻辑关系表达、模拟气流、PPT整合、自动巡检及演示路线定制等,用户可以在平台中制作内容丰富、生动多彩、图文并茂的数据中心介绍和演示内容,以耳目一新的形式展现数据中心的方方面面,有力提升数据中心整体形象,充分体现数据中心管理水平。
功能特性:
PPT演示汇报管理、日常工作视角管理、动画线路管理。
『伍』 大数据可视化技术是什么做大数据开发要会吗
可视化技术是利用计算机图形学及图像处理技术,将数据转换为图形或图像形式显示到屏幕上,并进行交互处理的理论、方法和技术。 做大数据开发不需要会这个,需要会的是Hadoop生态系统内的组件的开发技术,像spatk、hbase等,你可以参照八斗学院的大纲来学习
『陆』 大数据可视化需要哪些类型的呈现形式
1.可视化是连接用户和数据的桥梁,是我们向用户展示我们的成果的一种手段,因版此可视化并不是非常权特化的研究领域,它可以有非常广泛的应用和创建途径。作为非计算机专业的人员,你可以借助现有的程序和软件,根据自己数据的特点,绘制清楚直观的图表。Excel,SPSS,Google Public Data 等。一些博客也会介绍常用的可视化工具,比如 22个免费的数据可视化和分析工具推荐。
2. 如果你拥有一定的编程基础,可以尝试使用一些编程或者数学工具来进行自定义图表绘制,比如 Mathematica,R,ProtoType等。
3. 更进一步,你就可以用编程语言来写自己的可视化系统了。这样你就会有很自由的发挥空间和操控能力,数据处理,表现形式,交互方式等都可以有很自主的设计。
4. 入门书的话,你可以去看看 Edward Tufte 的一些书籍。
『柒』 大数据可视化有哪些优点
1、动作更快
由于人脑对视觉信息的处理要比书面信息简单得多。生活中咱们都能发现,有时候文字表达记不住,换成图形表达就会记得很快。所以说,数据可视化是一种十分清晰的交流方法,使事务领导者能够更快地理解和处理那些杂乱的数据。
大数据可视化东西能够提供实时信息,使利益相关者更简单对整个企业进行评估。对商场改变更快的调整和对新机会的快速识别是每个职业的竞赛优势。
2、以设性方法提供成果
规范化的文档经常被静态表格和各种图表类型所夸张,由于它制造的太过于具体了。而领导恰恰不需要知道这些泰国具体的内容。
而使用大数据可视化的东西陈述就能够让咱们能够用一些简短的图形就能表现那些杂乱信息,甚至单个图形也能做到。决议计划者能够通过可视化东西,轻松地解说各种不同的数据源和进行各种决议计划。
3、能够理解运营和成果之间的连接
数据可视化允许用户去盯梢运营和整体事务性能之间的连接,在竞赛环境中,找到事务功用和商场性能之间的相关性是至关重要的。
关于大数据可视化有哪些优点,青藤小编就和您分享到这里了。如果你对大数据工程有浓厚的兴趣,希望这篇文章能够对你有所帮助。如果您还想了解更多数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
『捌』 大数据可视化展现方式有哪些
一、面积&尺寸可视化
对同一类图形(例如柱状、圆环和蜘蛛图等)的长度、高度版或面积加以区别,来清晰的表达权不同目标对应的目标值之间的比照。
这种办法会让阅读者对数据及其之间的比照一目了然。制作这类数据可视化图形时,要用数学公式核算,来表达准确的标准和份额。
二、颜色可视化
经过颜色的深浅来表达目标值的强弱和巨细,是数据可视化规划的常用办法,用户一眼看上去便可全体的看出哪一部分目标的数据值更突出。
三、图形可视化
在咱们规划目标及数据时,使用有对应实际含义的图形来结合呈现,会使数据图表愈加生动的被展示,更便于用户了解图表要表达的主题。
四、地域空间可视化
当目标数据要表达的主题跟地域有关联时,咱们一般会挑选用地图为大布景。
这样用户能够直观的了解全体的数据情况,同时也能够依据地理位置快速的定位到某一区域来查看详细数据。
五、概念可视化
经过将笼统的目标数据转换成咱们熟悉的简单感知的数据时,用户便更简单了解图形要表达的意义。
『玖』 大数据开发和大数据可视化哪个好
大数据开发的学习内容中包含可视化,掌握了大数据的开发技术,也可以从事可视化的相关工作。
基础阶段:Linux、Docker、KVM、MySQL基础、Oracle基础、MongoDB、redis。hadoop maprece hdfs yarn:hadoop:Hadoop 概念、版本、历史,HDFS工作原理,YARN介绍及组件介绍。大数据存储阶段:hbase、hive、sqoop。大数据架构设计阶段:Flume分布式、Zookeeper、Kafka。大数据实时计算阶段:Mahout、Spark、storm。大数据数据采集阶段:Python、Scala。大数据商业实战阶段:实操企业大数据处理业务场景,分析需求、解决方案实施,综合技术实战应用。
大数据技术人员的就业方向:大数据系统研发类人才、大数据应用开发类人才和大数据分析类人才。
工作岗位:ETL研发、Hadoop开发、可视化(前端展现)工具开发、信息架构开发、数据仓库研究、OLAP开发、数据预测(数据挖掘)分析、企业数据管理、数据安全研究、数据科学研究等。