南信大数据结构
⑴ “大数据技术结构与数据挖掘”和“信息检索和利用”两个选修课怎么选择
现在大数据非常火,而且今后大数据在智能制造领域必然会有越来越重要的作用。选这个到时候就业会更好些。
⑵ 大数据专业主要学什么课程
大数据技术专业属于交叉学科:以统计学、数学、计算机为三大支撑性学科;生物、医学、环境科学、经济学、社会学、管理学为应用拓展性学科。
此外还需学习数据采集、分析、处理软件,学习数学建模软件及计算机编程语言等,知识结构是二专多能复合的跨界人才(有专业知识、有数据思维)。
以中国人民大学为例:
基础课程:数学分析、高等代数、普通物理数学与信息科学概论、数据结构、数据科学导论、程序设计导论、程序设计实践。
必修课:离散数学、概率与统计、算法分析与设计、数据计算智能、数据库系统概论、计算机系统基础、并行体系结构与编程、非结构化大数据分析。
选修课:数据科学算法导论、数据科学专题、数据科学实践、互联网实用开发技术、抽样技术、统计学习、回归分析、随机过程。
(2)南信大数据结构扩展阅读:
大数据岗位:
1、大数据系统架构师
大数据平台搭建、系统设计、基础设施。
技能:计算机体系结构、网络架构、编程范式、文件系统、分布并行处理等。
2、大数据系统分析师
面向实际行业领域,利用大数据技术进行数据安全生命周期管理、分析和应用。
3、hadoop开发工程师。
解决大数据存储问题。
4、数据分析师
不同行业中,专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测的专业人员。在工作中通过运用工具,提取、分析、呈现数据,实现数据的商业意义。
5、数据挖掘工程师
做数据挖掘要从海量数据中发现规律,这就需要一定的数学知识,最基本的比如线性代数、高等代数、凸优化、概率论等。经常会用到的语言包括Python、Java、C或者C++,我自己用Python或者Java比较多。有时用MapRece写程序,再用Hadoop或者Hyp来处理数据,如果用Python的话会和Spark相结合。
⑶ 我想考南师大的地图学与地理信息系统专业的研究生01 地理空间分析 01方向:C语言程序设计(含数据结构)
南师大的GIS专业是全国最强的,你选择的是很正确的哦!这个其实也并不是很难考啦!您可以试一试的。毕业以后可以进一些很好的公司。。。比如esri,有几个老师是比较推荐的,如闾国年。。。
⑷ 我是通信工程专业大一的学生,暑假想自学数据结构,请学长们传授点经验 谢谢
数据结构不是很好学。它是分语言的,像我们学的就是C语言版本的,不知道你大一计算机语言学的是什么。数据结构属于那种中阶到高阶的进级的东西。一般用不到,但是很有用,有利于以后写代码(超大的程序)。大一要想看点东西,建议看看计算机语言,比如C,回来自己去报个计算机等级考试(全国的)。要是觉得太easy就去看看嵌入式(硬件方面的),要是不感兴趣就去看看Linux(这个绝对比数据结构重要)
⑸ 学计算机在江苏大学、南京信息工程大学、南京工业大学这三所中怎么选
信息类的专业,在江苏非211里,首先推荐南邮,其次是南信大,其他学校不堪入目。南邮,不用说了,和北邮齐名。另外南信大虽原是气象学院,但该校信息类实力也不容小视,江苏省信号处理重点实验室、大数据重点实验室、网络监控工程中心等,不能也不会改为现在的名字。其他学校,比如南工大强在化工,其次机械,材料,土木等。
⑹ 大数据下的地质资料信息存储架构设计
颉贵琴 胡晓琴
(甘肃省国土资源信息中心)
摘要 为推进我国地质资料信息服务集群化产业化工作,更大更好地发挥地质资料信息的价值,本文针对我国现有的地质资料信息集群化共享服务平台存在的缺陷和问题,基于现有系统的存储架构,设计了一种大数据下的地质资料信息存储架构,以便于我国地质资料信息服务集群化产业化工作能够适应大数据时代的数据存储。
关键词 大数据 地质资料 存储 NoSQL 双数据库
0 引言
新中国成立60多年来,我国形成了海量的地质资料信息,为国民经济和社会发展提供了重要支撑。但在地质资料管理方面长期存在资料信息分散、综合研究不够、数字化信息化程度不高、服务渠道不畅、服务能力不强等问题,使地质资料信息的巨大潜在价值未能得到充分发挥。为进一步提高地质工作服务国民经济和社会发展的能力,充分发挥地质资料信息的服务功能,扩大服务领域,国土资源部根据国内外地质工作的先进经验,做出了全面推进地质资料信息服务集群化产业化工作的部署。
目前,全国各省地质资料馆都在有条不紊地对本省成果、原始和实物地质资料进行清理,并对其中重要地质资料进行数字化和存储工作。然而,由于我国地质资源丰富,经过几十年的积累,已经形成了海量的地质资料,数据量早已经超过了几百太字节(TB)。在进行地质资料信息服务集群化工作中,随着共享数据量的不断增大,传统的数据存储方式和管理系统必然会展现出存储和检索方面的不足以及系统管理方面的缺陷。为了解决该问题,需要设计更加先进的数据存储架构来实现海量地质资料的存储。
而大数据(Big Data)作为近年来在云计算领域中出现的一种新型数据,科技工作者在不断的研究中,设计了适合大数据存储管理的非关系型数据库NoSQL进行大数据的存储和管理。本文将针对我国现有的地质资料信息集群化共享服务平台存在的缺陷和问题,利用大数据存储管理模式的思想,提出一种海量地质资料存储架构,改进现有系统存储架构,以便于我国全面推进地质资料信息服务集群化产业化工作。
1 工作现状
1.1 国内外地质资料信息的存储现状
在美国,主要有两大地质资料公共服务平台,分别是地球科学信息中心(ESIC)、地球资源观测和科学中心(EROS),其目的是通过为社会和政府提供更加便利、快速的地质信息服务。20世纪90年代初,澳大利亚出台了国家地球科学填图协议,采用先进的科学方法和技术进行数据存储,从而形成了第二代澳大利亚陆地地质图。
目前,我国地质资料信息服务集群化产业化工作刚刚起步,虽然国土资源部信息中心已经开发了地质资料信息集群化共享服务平台,并倡导各地方用户使用该系统。但由于各个地方早期的工作背景不一致,因此各地方所使用的存储系统也不尽相同,主要有Access、SQL Server、Oracle、MySQL等系统。本文以国土资源部信息中心开发的地质资料信息集群化共享服务平台的存储系统MySQL为例说明。该系统是基于关系数据库管理系统MySQL的一套分布式存储检索系统。该系统的部署使得我国地质资料信息服务集群化产业化工作取得了重大进展,同时也为我国建立标准统一的地质资料信息共享服务平台和互联互通的网络服务体系奠定了坚实的基础。然而,该系统的研发并没有考虑到地质资料信息进一步集群化以及在未来地质资料信息进入大数据时代的信息共享和存储管理问题,也没有给出明确的解决方案。
1.2 大数据的存储架构介绍
大数据是近年在云计算领域中出现的一种新型数据,具有数据量大、数据结构不固定、类型多样、查询分析复杂等特点。传统关系型数据库管理系统在数据存储规模、检索效率等方面已不再适合大数据存储。NoSQL(Not Only SQL)是与关系数据库相对的一类数据库的总称。这些数据库放弃了对关系数据库的支持,转而采用灵活的、分布式的数据存储方式管理数据,从而可以满足大数据存储和处理的需求。NoSQL基于非关系型数据存储的设计理念,以键值对进行存储,采用的数据字的结构不固定,每一个元组可以有不一样的字段,且每个元组可以根据自己的需要增加一些自己的键值对,可以减少一些检索时间和存储空间。目前,应用广泛的 NoSQL 数据库有 Google BigTable、HBase、MongoDB、Neo4 j、Infinite Graph等。
2 大数据下的地质资料信息存储架构设计
根据国土资源部做出的全面推进地质资料信息服务集群化产业化工作的部署,国土资源部倡导全国地质资料馆使用国土资源部信息中心开发的地质资料信息集群化共享服务平台,实现地质资料信息的存储和共享。该系统采用了数据库管理系统MySQL作为数据存储系统。
为了与现有系统和现有的工作进行对接,并为将来地质资料进入大数据时代后的存储工作做准备,本文设计了一种能用于海量地质资料信息存储并且兼容MySQL的分布式的数据存储架构(图1)。
整个系统可以根据不同的用户等级分为不同的用户管理层,由于图幅限制,在图1 中仅仅展示了3级:国家级管理层(即共享服务平台用户层)、省级管理层以及市级管理层(可根据实际需要延伸至县级)。
每级管理层的每个用户可以单独管理一个服务器。如国土资源部信息中心可以单独管理一个服务器;甘肃省国土资源信息中心可以单独管理一个服务器,陕西省国土资源信息中心可以单独管理一个服务器;甘肃的若干个市级国土资源局可以根据需要分别管理各自的服务器。
在服务器上分别安装两套数据库管理系统,一套是原有的MySQL数据库管理系统,另一套是为大数据存储而配备的NoSQL型数据库管理系统。在服务器上还专门开发一个数据库管理器中间件,用于进行用户层和数据库的通信以及两套数据库之间的通信。
由于各个管理层都各自维护自己的数据库和数据。当用户需要进行数据存储时,他所影响的数据库仅仅是本地数据库,存储效率较高;当用户需要从多个数据库读取数据时,顶层的共享服务平台会根据用户需求进行任务分解,将任务分发给下层的管理层进行数据库读取,由于各个数据库并行读取,从而提高了数据库读取效率。
图1 大数据下的地质资料信息存储架构框图
2.1 用户管理层
用户管理层根据权限范围,分为多层(本文以3层为例)。
位于顶层的国家级管理层(共享服务平台用户层)负责用户访问权限的分配、与其直接关联的数据库的访问、下级管理层任务的分配等工作。
用户访问权限的分配是指为访问本共享服务平台的个人用户和单位用户分配数据的使用权限、安全性的设计等。
与其直接关联的数据库访问是指直接存储在其本地数据库上的数据的访问。在该数据库中不仅要存储所需要的地质资料,还要存储注册用户信息等数据。
下级管理层任务分配是指如果用户需要访问多个下层数据库,用户只需要输入查询这几个下层数据库的命令,而如何查找下层数据库则由该功能来完成。例如某用户要查找甘肃、陕西、上海、北京的铁矿分布图,则用户只需要输入这几个地方及铁矿等查询条件,系统将自动把各个省的数据库查询任务分派到下级管理层。
同理,位于下层的省级管理层和市级管理层除了没有用户访问权限功能外,其余功能与国家级管理层是相同的。各层之间的数据库通过互联网相互连接成分布式的数据库系统。
2.2 MySQL和NoSQL的融合
MySQL是关系型数据库,它支持SQL查询语言,而NoSQL是非关系型数据库,它不支持SQL查询语言。用户要想透明地访问这两套数据库,必须要设计数据库管理器中间件,作为用户访问数据库的统一入口和两套数据库管理系统的通信平台。本文所设计的数据库管理器简单模型如图2所示。
图2 数据库管理器模型
服务器管理器通过用户程序接口与应用程序进行通讯,通过MySQL数据库接口与MySQL服务器通讯,通过NoSQL数据库接口与NoSQL数据库接口通讯。当应用程序接口接收到一条数据库访问命令之后,交由数据库访问命令解析器进行命令解析,从而形成MySQL访问命令或者NoSQL访问命令,通过相应的数据库接口访问数据库;数据库返回访问结果后经过汇总,由应用程序接口返回给应用程序。
两套数据库可以通过双数据库通信协议进行相互的通信和互访。此通信协议的建立便于地质工作人员将已经存入MySQL数据库的不适合结构化存储的数据转存到NoSQL数据库中,从而便于系统的升级和优化。
2.3 系统的存储和检索模式
在本存储框架设计中,系统采用分布式网络存储模式,即采用可扩展的存储结构,利用分散在全国各地的多台独立的服务器进行数据存储。这种方式不仅分担了服务器的存储压力,提高了系统的可靠性和可用性,还易于进行系统扩展。另外,由于地质资料信息存储的特殊性,各地方用户的数据存储工作基本都是在本地服务器进行,很少通过网络进行远程存储,所以数据存储效率较高。
在一台数据库服务器上安装有MySQL和NoSQL型两套数据库管理系统,分别用于存储地质资料信息中的结构化数据和非结构化数据。其中,NoSQL型数据库作为主数据库,用于存储一部分结构化数据和全部的非结构化数据;而MySQL数据库作为辅助数据库,用于存储一部分结构化的数据,以及旧系统中已经存储的数据。使用两套数据库不仅可以存储结构化数据而且还可以适用于大数据时代地质资料信息的存储,因此系统具有很好的适应性和灵活性。
2.4 安全性设计
地质资料信息是国家的机密,地质工作人员必须要保证它的安全。地质资料信息进入数字化时代之后,地质资料常常在计算机以及网络上进行传输,地质资料信息的安全传输和保存更是地质工作人员必须关注和解决的问题。在本存储架构的设计中设计的安全问题主要有数据库存储安全、数据传输安全、数据访问安全等问题。
数据库设计时采用多边安全模型和多级安全模型阻止数据库中信息和数据的泄露来提高数据库的安全性能,以保障地质信息在数据库中的存储安全;当用户登录系统访问数据库时,必须进行用户甄别和实名认证,这主要是对用户的身份进行有效的识别,防止非法用户访问数据库;在对地质资料进行网络传输时,应该首先将数据进行加密,然后再进行网络传输,以防止地质信息在传输过程中被窃取。
3 结语
提高地质资料数字化信息化水平,是国外地质工作强国的普遍做法。为推进我国地质资料信息服务集群化产业化工作,本文针对我国现有的地质资料信息集群化共享服务平台存在的缺陷和问题,利用大数据存储管理模式的思想,基于现有系统的存储架构,设计了一种大数据下的地质资料信息存储架构,以便于我国地质资料信息服务集群化产业化工作能够适应大数据时代的数据存储。该存储架构的设计只涉及了简单模型的构建,具体详细复杂的功能设计和软件实现还需要在进一步的研究工作中完成。
参考文献
[1]吴金朋.一种大数据存储模型的研究与应用[D].北京:北京邮电大学计算机学院,2012.
[2]吴广君,王树鹏,陈明,等.海量结构化数据存储检索系统[J].计算机研究与发展,2012,49(Suppl):1~5.
[3]黄
⑺ 求南信大(C语言版)数据结构期末考试卷
好好看书吧!祝你取得好成绩
⑻ 数据结构学生兴趣信息管理系统,有些问题不太明白,有大佬指教一下吗
structHobby
{
charhobby[20];//一个字符串用来存储兴趣名
structHobby*next;//Hobby本身的链表
};
structHobbyCategory//兴趣类别结构体
{
charhobbyCategory[20];//一个字符串用来存储兴趣类别名
structHobby*pHobby;//一个链表用来管理该类别下的所有兴趣
structHobbyCategory*next;//HobbyCategory本身的链表
};
structInfo//学生信息结构体
{
charkey[20];//一个字符串用来存储每项信息的名称
charvalue[50];//一个字符串用来存储每项信息的内容
structInfo*next;//Info本身的链表
structStudent//学生结构体
{
structHobbyCategory*pHC;//一个链表用来管理兴趣类型
structInfo*pInfo;//一个链表用来管理信息
structStudent*next;//Student本身的链表
};
这种问题适合用C++编写,用C语言写会非常复杂。
⑼ 如何正确建立大数据结构
大数据各行各业的企业都提供了潜力。正确使用这些大数据信息可能将增加商业价值,帮助您的企业从市场竞争中脱颖而出。如下是几个企业成功应用大数据的案例: 大数据的例子 汽车制造商已经开始使用大数据来了解汽车何时需要返回到车库进行维修。使用汽车发动机的数百个传感器,可以为汽车制造商发送实时的数据信息,这使得制造商甚至比驾驶汽车的司机还要提前知道汽车何时会出现故障。卡车制造商开始使用大数据,基于实时交通条件和客户的需求来改进他们的路由,从而节约燃料和时间。 零售业也开始越来越多的使用大数据,鉴于越来越多的产品均有一个RFID标签能帮助零售商跟踪产品,知道很少某种产品库存缺货,并及时向供货商订购新产品。沃尔玛便是这正确利用大数据这方面的一个很好的例子。当零售商开始识别他们的客户时,就能够更好地建立商店,更好的满足客户的需求。 当然,上述这些只是几个浅显的例子,大数据的可能性几乎是无止境的。不久的将来,我们将讨论在大数据平台上的最佳实践。知道大数据能够提供商业价值是一回事;而企业要知道如何创建正确的架构则又是另一回事了。 大数据结构 大数据有三个特征,使得大数据不同于现有的数据仓库和商业智能。大数据的这三大特点是: 数据量庞大:大数据的数据量相当庞大,更多的时候大数据的数据量可以达到比数TB到PB级字节。 高速度传递:所有这些TB和PB字节的数据能够实时交付,数据仓库每天都需要应付如此高速的数据流。