1. 人工智能+医学影像能解决哪些问题

很多问题,有报道称其可以替代影像医生

2. 医学影像学将来会被人工智能取代吗

应该说这就是一个趋势,一个人工智能的趋势,很多东西只要是研制出来,他就能够在一定范围内,让他更简单一些,比如说现在的,到机器上拿片子就在拿着收据去扫,就可以把片子取出来了,所以我们说影像学也会一点点的,越来越人工智能化

3. 医学影像学会被人工智能取代吗

近年来,人工智能(AI)以各种方式进入了日常生活,从智能手机的语言识别工具到金融交易专的分析,到属自动驾驶汽车的算法,以及各种棋盘游戏,医学影像非常有可能是不久后的一个根本性的转变。
AI智能影像产品可以帮助放射科医生提升诊断的准确率、节省工作量不断加大的放射科医生的时间,以及可以进行良恶性检测和自动生成检测报告等。本文将从国外媒体报道和国内AI医疗影像企业盘点两方面来解读。

4. 滑铁卢大学和香港科技大学硕士人工智能哪个更强

滑铁卢大复学是一所以研究制为主的中等大小的公立大学,创建于1957年。该校位于安大略省的西南面的滑铁卢市,以学习与实习并重的合作教育(co-operative ecation)而闻名,是一所加拿大的顶尖公立大学。2011年到2013年,该校一直稳居麦克林杂志评选的加拿大综合性大学排名的第三位,是北美地区最优大学之一,其数学,计算机科学和工程学科教学水平居世界前列,其中优势专业计算机科学名列2017年usnews世界大学排行榜第18位。

5. 目前我国涉及医学影像类的人工智能企业数量高达多少加家

目前国内做医学影像的企业不是很多,主要有上海联影,苏州,南京,沈阳,成都都有类似企业。人工智能他们都在做应该。
具体数量没法给到准确答复

6. 医学影像技术专业怎么样就是专门拍x光片的么未来有发展么会不会被人工智能取代事业呢

影像技术的一般是只负责操作,最后出诊断报告的由有医师资格的出,医学影内像学的比较好,技术的不容是很好,目前就业还是不错的,因为目前这个专业的毕业生不多,很多医院都需要,其实主要是需要影像学的,但是没有的时候就大专的影像技术也行了,影像不仅是拍X光而已,彩超、CT、核磁共振等都属于影像学的,现在还有一些手术什么也是通过影像的

7. 人工智能在医疗领域能干啥

人工智能用来提高健康医疗服务的效率和自动化程度。人工智能技术的发展在过去备受质疑,然后如今我们发现大数据技术正在推进人工智能的进程,在医疗健康领域也是如此。

分析患者行为,制定个性化肿瘤治疗方案
例如,两位乳腺癌患者可能会得到相同的治疗方案,但其实两者的身体情况可能完全不同。
其中一个可能是马拉松长跑者,另外一个是喜欢安静的读书的人;一个可能是吸烟者,另一个也许是个注重养生的人;一个可能都60多岁了,另一个也就刚刚40。这样的情况在我们身边是常见的。
所以考虑到方方面面的不同,这两位患者需要两种不同的治疗方案。
而对于科学家和医生来说,难度在于掌握特定患者的个人信息。重要的关键信息常常淹没于大量的数据当中,医生根本没有时间(可能要一年)在茫茫信息中筛选出他们想要的。
于是许多研究者想方设法利用人工智能的方式来跨越这个难度。
比如,卡耐基梅隆大学和匹兹堡大学的科学家,正在用人工智能从电子病历、诊断影像、处方、基因组资料、保险记录,甚至是可穿戴设备的数据中挑选出有用信息,为特殊疾病和特殊人群设立医疗保健方案。
研究者们利用大数据来创建特定的医疗方案、控制传染病,并寻找致命性疾病的治疗方法。

“现在遇到的最大问题就是,系统并不智能。” 卡耐基梅隆大学机器学习系的教授Eric Xing说道。“存储在系统中的数据基本上是死数据,而机器学习和人工智能可以把有用的信息从海量数据中分离出来。你可以这样理解,就像是有一个人工的大脑在代替一个‘死’的存储系统在工作。”
他表示,卡耐基梅隆大学和匹兹堡大学正在与匹兹堡大学医学中心合作一个“匹兹堡健康数据联盟”的项目。医疗中心在接下来的6年中,会每年资助研究者1000~2000万美元用于这项研究。
科学家正在用从医疗中心获得的健康数据(剔除了患者身份信息),来研究如何能够更快速有效的分析大数据,去创造一个与健康医疗相关的技术和服务,能针对不同患者更好的做诊断、治疗和沟通。
“每个患者都是不同的个体。”Xing补充道,“一个非常简单的观点,比如说乳腺癌应该用药物A或者B来治疗。但是由于生活方式、生活环境和其他相关健康因素的独特性,使得每个人都是一个不同的独立个体。而人工智能不单单是从一位医生那里提取信息,而是来自大量有经验的医生,这样,它就能从不同患者那里梳理出有共性的信息。”
此外,人工智能软件工作效率远远高于人脑,能够更快速的找到数据的模式和相似性,帮助医生和科学家发现最关键的信息。
举例来说,一名50岁的糖尿病患者,生活方式很积极,某一种治疗方法可能对他很有效果。那么医生就可以用同一种治疗方法,来医治其他患有相同特性的糖尿病患者。
Xing表示,他们的团队就正在研究一款App,可以为用户提供一些健康生活建议,规避一些疾病。此款App可能会在一年内上线。
Philip Lehman,卡耐基梅隆大学计算机科学副院长告诉笔者,这款App应用了人工智能,可以告诉人们什么时候该去看医生,咨询什么样的医生以及怎样保持身体健康。
“比如,现在大家一般会通过手机来搜索,‘我怎么到某个地方’。” Lehman在采访中表示。“其实,你把它搬到医疗上是一样的。‘我怎么做才能感觉好点或者活的久一点’?”
Lehman和Xing希望,从App到机器学习工具和服务,他们都能延展出不同产品的原型,在未来的5-6年内,开发出十几个新产品。
这方面比较出名的公司,是获得IBM投资的Welltok,它借助IBM的“沃森”超级电脑,来构建通过个性化活动与用户沟通的愿景。其App Cafewell Concierge 利用沃森系统的自然语言处理能力,来更好的了解用户的需求,平衡对用户的激励和警告,以此达到预期目标来回馈用户。

虚拟医疗助手,改善药物依从性
比如,Aicure,利用移动技术和面部识别技术来判断患者是否按时服药,再通过App来获取患者数据,用自动算法来识别药物和药物摄取。患者数据会通过与HIPAA(健康保险流通与责任法案)兼容网络实时的反馈给临床医生,这样医生就可以确认他的患者是否在按照他们的嘱咐按时服药。当然,这项技术也可以被用来标识不良事件。
还有一个是,Next IT开发的一款app Alme Health Coach,去深掘人们为什么不按时服药。对于健康服务业来说,Next IT虽然还是个新手。但是它曾经开发了一款app“虚拟助手”来帮助消费者解决在银行、零售、财产管理等方面遇到的问题。
一般,一些人工智能的组件会重复用户话语来明确用户想法。而Alme Health Coach是专为特定疾病、药物和治疗设计配置。它可以与用户的闹钟同步,来触发例如‘睡得怎么样’的问题,还可以提示用户按时服药。这种思路是收集医生可用的可行动化数据,来更好的与病人对接(前提是患者愿意共享他们的数据)。

跟踪状态,自动汇报支持智能看护
人工智能技术公司Automated Insights把它的自然语言生成平台Wordsmith与Great Call(移动App开发者)合作。家人和朋友可以通过与App连接的GreatCall设备,来获取设备携带者的信息。它主要用于老年人看护,当携带者需要帮助的时候,App可以收到消息提醒。此外,该App还有GPS定位专利技术,可以获取用户的位置信息。
目前,该公司已经被Vista Equity Partners 和STATS(体育信息技术公司)收购。利用Wordsmith的自动书写功能,将对看护者的情况,包括所在地点、活动路线、电池状态、设备使用情况等信息自动生成文字报告给看护人。

智能化药物研发
生物科技公司也正在把人工智能和大数据结合到一起,来识别新的药物化合物,比如Cloud 制药和 Berg。
Berg通过开发的Interrogative Biology人工智能平台,来研究人体健康组织,探究人体分子和细胞自身防御组织,以及发病原理机制,利用人工智能和大数据来推算人体自身分子潜在的药物化合物。
这种方法有很多优点,不但使得靶向治疗成为今天医学治疗的趋势,而且利用人体自身的分子来医治类似于糖尿病和癌症等疑难杂症,要比研究新药的时间成本与资金少一半。
当然,Berg不是这个领域的唯一公司。Cloud制药就在专注于这个领域的研发,并已融资2000万美元。
还有,强生和赛诺菲,也正在用“沃森”超级系统(一个可迅速在海量数据中识别相关模式的计算机系统)来支持药物研发。
强生用“沃森”来快速分析详细的临床试验结果的科技论文,加快对不同治疗方法的对比效果研究,以求获得药物在更广泛领域的应用,而这些用普通的方法,需要3个人花费10个月的时间来完成这些工作。
“沃森”现在能识别化学、生物学、法律和知识产权语言,让科学家拥有别人无法拥有的与数据“交流”的能力,这将加快实现科学和医疗研究领域的突破。

8. 聚焦“人工智能+医学影像”,将擦出怎样的火花

放射检查中的CT、磁共振、超声检查的三维成像,都可以算是“人工智能+医学影像”擦出的“火花”。

9. 阿里健康、腾讯觅影在AI医疗影像诊断行业算是龙头企业么

阿里健康,腾讯,迅鹰在air一聊一象征短行也算龙头企业是非常好的企业,还得企业可以非常信任。你觉得。他怎么样?

10. 人工智能医学影像能识别哪些图像类型

随着医学影像智能化诊断的快速发展,为了满足愈加复杂的医学图像回分析和处理答要求,人工智能方法成为近年来医学图像处理技术发展的一个研究热点。本文对近五年来人工智能方法在医学图像处理领域应用的新进展进行综述。方法:将应用在医学图像处理领域主要的几种人工智能方法进行了分类总结,讨论了这些方法在医学图像处理各分支领域的应用,分析比较了不同方法间的优缺点。结果:人工智能方法应用主要在医学图像分割、图像配准、图像融合、图像压缩、图像重建等领域;包括蚁群算法、模糊集合、人工神经网络、粒子群算法、遗传算法、进化计算、人工免疫算法、粒计算和多Agent技术等;涉及MR图像、超声图像、PET图像、CT图像和医学红外图像等多种医学图像。结论:由于医学影像图像对比度较低,不同组织的特征可变性较大,不同组织间边界模糊、血管和神经等微细结构分布复杂,尚无通用方法对任意医学图像都能取得绝对理想的处理效果。改进的人工智能方法与传统图像处理方法的结合,在功能上相互取长补短,将是医学图像处理技术重要的发展趋势。关键词:医学影像;医学图像处理;人工智能