人工智能统计入门
『壹』 人工智能入门书籍
主要有以下书籍:
1.《人工智能》(美)尼尔森 郑扣根译 机械工业出版社
2. 人工智能智能系统指南(英文版·第2版) (澳)尼格内维特斯基(Negnevitsky,M.) 机械工业出版社
3.《人工智能:理论与实践》(美)迪安 等著,顾国昌 等译 电子工业出版社
4.《人工智能:复杂问题求解的结构和策略》(美)George F.Luger 著,史忠植,张银奎 等译 机械工业出版社
5.《游戏编程中的人工智能技术》(美)布克兰德著,吴祖增,沙鹰翻译 清华大学出版社
6.《人工智能游戏编程真言》(美)拉比(Rabin,S.) 主编,庄越挺,吴飞 译清华大学出版社
个人推荐《人工智能》的原因:
第一,该书言简意赅比较容易读懂。
第二,有很多例子穿插在在课文中,帮助读者能将每种人工智能的方法应用于只见众。第三,算法或者数据结构的解释被巧妙地阐释出来,而不是对一大堆资料的冗长的总结。最后,编程章节让学生能更深刻地理解资料,同时也穿插着许多对实现细节的参考。
『贰』 人工智能如何入门
人工智能入门需要掌握这些知识:
1.基础数学知识:线性代数、概率论、统计学、图论
2.基础计算机知识:操作系统、linux、网络、编译原理、数据结构、数据库
3.编程语言基础:C/C++、Python、Java
4.人工智能基础知识:ID3、C4.5、逻辑回归、SVM、分类器、等算法的特性、性质、和其他算法对比的区别等内容。
5.工具基础知识:opencv、matlab、caffe等
要进入人工智能行业,首先要有一定的数学功底,因为人工智能不同于app开发,网页开发、游戏开发等传统的互联网职位,先看看51cto学院人工智能的课程,会有不少帮助。人工智能是从数学中的“逼近理论”逐步演化而来的,当今人工智能所使用的方法,最开始的时候大部分是数学家为了逼近某些比较难表示的非线性函数而使用的。后来随着计算机性能的提高,计算机工作者,统计学家,开始尝试用这套“逼近理论”解决一些分类问题。逐步发展成为现在的人工智能局面。现在属于人工智能行业发展初期,各种可用的api函数都比较少,所以自己编写算法是必须要会的。
『叁』 自学人工智能需要学那些专业知识
一、人工智能是一个综合学科,如楼上所说。而其本身又分为多个方面如神经网络、机器识别、机器视觉、机器人等。一个人想自学所有人工智能方面并不是很容易的一件事。对于你想知道人工智能在编程方面需要多深的要求。怎么说好呢无论C++还是汇编他都是一门语言主要会灵活运用。大多机器人仿真都用的混合编程模式,也就是运用多种编程软件及语言组合使用。之所以这样是为了弥补语言间的不足。prolog在逻辑演绎方面比突出。C++在硬件接口及windos衔接方面比较突出,MATLAB在数学模型计算方面比较突出。如果单学人工智能算法的话prolog足以,如果想开发机器仿真程序的话VC++ MATLAB应该多学习点。对于你想买什么书学习。我只能对我看过的书给你介绍一下,你再自己酌量一下。
1.人工智能算法方面:《人工智能及其应用》第三版、人工智能与知识工程。这两本感觉买一本就可以了。第一本感觉能简单并且全面点。这类书其实很多可是。大多内容都是重复的所以买一到两本即可。
2.机器视觉算法方面:《机器视觉算法与应用》这本书讲的大多都是工业化生产中机器视觉应用。从内容来说并不是很简单,建议不要当入门教材来学习。
3.机器人方面:新版《机器人技术手册》日译的书,可能这是我当初在当当网里找到唯一一本比较全面实用的机器人方面的书。这本书由基础到应用以及一些机器人实际问题上讲述得很全面。强烈建议买一本。
二、学习人工智能AI需要下列最基础的知识:
1.需要数学基础:高等数学,线性代数,概率论数理统计和随机过程,离散数学,数值分析。
2.需要算法的积累:人工神经网络,支持向量机,遗传算法等等算法;当然还有各个领域需要的算法,比如要让机器人自己在位置环境导航和建图就需要研究SLAM;总之算法很多需要时间的积累。
3.需要掌握至少一门编程语言,毕竟算法的实现还是要编程的;如果深入到硬件的话,一些电类基础课必不可少。
人工智能一般要到研究生才会去学,本科也就是蜻蜓点水看看而已,毕竟需要的基础课过于庞大。
『肆』 人工智能如何入门呢
从事人工智能,需要数学基础:高等数学,线性代数,概率论数理统计和随机过程,离散数学回,数值分析答。
需要算法的积累:人工神经网络,支持向量机,遗传算法等等算法;当然还有各个领域需要的算法,比如要让机器人自己在位置环境导航和建图就需要研究SLAM;总之算法很多需要时间的积累。
需要掌握至少一门编程语言:毕竟算法的实现还是要编程的;如果深入到硬件的话,一些电类基础课必不可少。
如果你感兴趣,可以去尝试,网站域名用top。
『伍』 人工智能难学吗,人工智能学什么内容,好学吗
入门都是很简单的。具体基础知识如下:
人工智能入门需要掌握这些知识内:
1.基础数学知识:线性代数、容概率论、统计学、图论
2.基础计算机知识:操作系统、linux、网络、编译原理、数据结构、数据库
3.编程语言基础:C/C++、Python、Java
4.人工智能基础知识:ID3、C4.5、逻辑回归、SVM、分类器、等算法的特性、性质、和其他算法对比的区别等内容。
5.工具基础知识:opencv、matlab、caffe等
『陆』 学习人工智能AI需要哪些知识
需要数学基础:高等数学,线性代数,概率论数理统计和随机过程,离散数学,数值分析。数学基础知识蕴含着处理智能问题的基本思想与方法,也是理解复杂算法的必备要素。今天的种种人工智能技术归根到底都建立在数学模型之上,要了解人工智能,首先要掌握必备的数学基础知识。线性代数将研究对象形式化,概率论描述统计规律。
需要算法的积累:人工神经网络,支持向量机,遗传算法等等算法;当然还有各个领域需要的算法,比如要让机器人自己在位置环境导航和建图就需要研究SLAM;总之算法很多需要时间的积累。
需要掌握至少一门编程语言,比如C语言,MATLAB之类。毕竟算法的实现还是要编程的;如果深入到硬件的话,一些电类基础课必不可少。
拓展资料:
人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。
人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。
人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。2017年12月,人工智能入选“2017年度中国媒体十大流行语”。
参考资料:网络—人工智能:计算机科学的一个分支
『柒』 人工智能,机器学习,统计学,数据挖掘之间有什么区别
说到人工智能,就不能不提到机器学习和深度学习。很多时候,我们得先明确人工智能与机器学习和深度学习的关系,我们才能更好地去分析和理解人工智能与数据分析、统计学和数据挖掘思维关联。人工智能与统计学、数据分析和数据挖掘的联系,更多的是机器学习与深度学习,同数据分析与数据挖掘的关联。
0.人工智能
人工智能英文缩写为AI,它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学研究领域的一个重要分支,又是众多学科的一个交叉学科,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括语音识别、图像识别、机器人、自然语言处理、智能搜索和专家系统等等,人工智能可以对人的意识、思维的信息过程的模拟。人工智能包括众多的分支领域,比如大家熟悉的机器学习、自然语言理解和模式识别等。
1.机器学习
机器学习属于人工智能研究与应用的一个分支领域。机器学习的研究更加偏向理论性,其目的更偏向于是研究一种为了让计算机不断从数据中学习知识,而使机器学习得到的结果不断接近目标函数的理论。
机器学习,引用卡内基梅隆大学机器学习研究领域的着名教授Tom Mitchell的经典定义:
如果一个程序在使用既有的经验E(Experience)来执行某类任务T(Task)的过程中被认为是“具备学习能力的”,那么它一定要展现出:利用现有的经验E,不断改善其完成既定任务T的性能(Performance)的特质。
机器学习已经有了十分广泛的应用,例如:数据挖掘、计算机视觉、自然语言处理、生物特征识别、搜索引擎、医学诊断、检测信用卡欺诈、证券市场分析、DNA序列测序、语音和手写识别、战略游戏和机器人运用。在我们当下的生活中,语音输入识别、手写输入识别等技术,识别率相比之前若干年的技术识别率提升非常巨大,达到了将近97%以上,大家可以在各自的手机上体验这些功能,这些技术来自于机器学习技术的应用。
那机器学习与数据挖掘的联系是什么呢?
机器学习为数据挖掘提供了理论方法,而数据挖掘技术是机器学习技术的一个实际应用。逐步开发和应用了若干新的分析方法逐步演变而来形成的;这两个领域彼此之间交叉渗透,彼此都会利用对方发展起来的技术方法来实现业务目标,数据挖掘的概念更广,机器学习只是数据挖掘领域中的一个新兴分支与细分领域,只不过基于大数据技术让其逐渐成为了当下显学和主流。
2.数据挖掘
数据挖掘一般是指从大量的数据中通过算法搜索隐藏于其中信息的过程。数据挖掘本质上像是机器学习和人工智能的基础,它的主要目的是从各种各样的数据来源中,提取出超集的信息,然后将这些信息合并让你发现你从来没有想到过的模式和内在关系。这就意味着,数据挖掘不是一种用来证明假说的方法,而是用来构建各种各样的假说的方法。数据挖掘不能告诉你这些问题的答案,他只能告诉你,A和B可能存在相关关系,但是它无法告诉你A和B存在什么相关关系。机器学习是从假设空间H中寻找假设函数g近似目标函数f。数据挖掘是从大量的数据中寻找数据相互之间的特性。
数据挖掘是基于数据库系统的数据发现过程,立足与数据分析技术之上,提供给为高端和高级的规律趋势发现以及预测功能;同时数据量将变得更为庞大,依赖于模式识别等计算机前沿的技术;其还有另外一个名称为商业智能(BI, Business Intelligence),依托于超大型数据库以及数据仓库、数据集市等数据库技术来完成。
主要挖掘方法有: 分类 、 估计、预测、相关性分组或关联规则、 聚类、复杂数据类型挖掘(Text, Web ,图形图像,视频,音频等)等技术。
3.深度学习
深度学习的概念源于人工神经网络的研究。含多隐层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。晦涩难懂的概念,略微有些难以理解,但是在其高冷的背后,却有深远的应用场景和未来。
那深度学习和机器学习是什么关系呢?
深度学习是实现机器学习的一种方式或一条路径。其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据。比如其按特定的物理距离连接;而深度学习使用独立的层、连接,还有数据传播方向,比如最近大火的卷积神经网络是第一个真正多层结构学习算法,它利用空间相对关系减少参数数目以提高训练性能,让机器认知过程逐层进行,逐步抽象,从而大幅度提升识别的准确性和效率。
神经网络是机器学习的一个分支,而深度学习又是神经网络的一个大分支,深度学习的基本结构是深度神经网络。
4.数据分析
数据分析的概念:基于数据库系统和应用程序,可以直观的查看统计分析系统中的数据,从而可以很快得到我们想要的结果;这个就是最基本的数据分析功能,也是我们在信息化时代了,除了重构业务流程、提升行业效率和降低成本之外的了。另外数据分析更多的是指从历史数据里面发现有价值的信息,从而提高决策的科学性。数据分析更侧重于通过分析数据的历史分布然后从中得出一些有价值的信息。还有一个数据分析更重要的功能,就是数据可视化。
比如说,在财务系统的信息化中,基于企业的财务系统,我们可以直观获取企业现金流量表、资产负债表和利润表,这些都来自与我们的数据分析技术。数据分析目前常用的软件是Excel, R, Python等工具。
在对比数据分析和数据挖掘时,数据分析则更像是对历史数据的一个统计分析过程,比如我们可以对历史数据进行分析后得到一个粗糙的结论,但当我们想要深入探索为什么会出现这个结论时,就需要进行数据挖掘,探索引起这个结论的种种因素,然后建立起结论和因素之间模型,当有因素有新的值出现时,我们就可以利用这个模型去预测可能产生的结论。
因此数据分析更像是数据挖掘的一个中间过程。
5.总结
人工智能与机器学习、深度学习的关系
严格意义上说,人工智能和机器学习没有直接关系,只不过是机器学习的方法被大量的应用于解决人工智能的问题而已。目前机器学习是人工智能的一种实现方式,也是最重要的实现方式。
深度学习是机器学习比较火的一个方向,其本身是神经网络算法的衍生,在图像、语音等富媒体的分类和识别上取得了非常好的效果。
数据挖掘与机器学习的关系
数据挖掘主要利用机器学习界提供的技术来分析海量数据,利用数据库界提供的技术来管理海量数据。
机器学习是数据挖掘的一种重要方法,但机器学习是另一门学科,并不从属于数据挖掘,二者相辅相成。
深度学习、机器学习的发展带了许多实际的商业应用,让虚幻的AI逐步落地,进而影响人类社会发展;
深度学习、机器学习以及未来的AI技术,将让无人驾驶汽车、更好的预防性治疗技术、更发达智能的疾病治疗诊断系统、更好的人类生活娱乐辅助推荐系统等,逐步融入人类社会的方方面面。
AI即使是现在,也是未来,不再是一种科幻影像和概念,业界变成了人类社会当下的一种存在,不管人类是否喜欢或者理解,他们都将革命性地改变创造AI的我们人类自身。
『捌』 推荐人工智能方向经典入门书籍
见人工智能吧里的推荐书目:http://tieba..com/f?kz=767603859
以下为复制:
入门
经典杂书:On Intelligence,中文版,《人工智能的未来》
http://ishare.iask.sina.com.cn/f/7735021.html
经典教材:《人工智能——一种现代方法》(第二版)
Artificial intelligence a modern approach(2section)
http://ishare.iask.sina.com.cn/f/6024072.html(英文版)
中文版简介:http://book.douban.com/subject/1230487/
心理学:
心理学可以被业余地分为3大部分。
第1部分,硬科学(science),以实验心理学为核心;严谨得近乎死板,是阅读的重点。
第2部分,心理量表、评估、统计学及相关理论,大多过于专业且枯燥。这部分只需了解智力测验和关于智
力(智能)的理论就可以了,其他的不重要。
第3部分,几乎是纯人文的东西(art),包括精神分析(弗洛伊德)、人本主义以及许多以心理咨询、心
理治疗为中心的理论和实践,及其他各种各样雷人的东西。这些往往被大众误解为心理学的全部,它们很
有趣但并不重要,基本可以无视。
2、《认知心理学》这个学科是人工智能的兄弟,无论如何必须浏览一下
http://ishare.iask.sina.com.cn/f/6773029.html?from=isnom
1、《普通心理学》彭聃龄(浏览)
最基础的部分,目前国内的通用教材,很系统,逻辑清晰。所谓的缺点是缺少人文关怀,所以正合适。
http://ishare.iask.sina.com.cn/f/5070763.html
3、《生理心理学》(浏览)
可以看国内版教材,比较便宜,都是互相抄的,内容差不多。看了这个就不用单看生理学了。
4、《弗洛伊德的近视眼(适应性潜意识如何影响我们的生活)》威尔森,这个属于杂书一类,讲潜意识比
较透彻。
5、智力理论和测量部分(《心理评估》)
http://wenku..com/view/ba065be2524de518964b7dd9.html (和这个类似,再稍微详细点)
网络:智力(intelligence)http://ke..com/view/2646.htm?fr=ala0_1_1
网络:智能(intelligence)http://ke..com/view/375267.htm?fr=ala0_1_1
经济学:
《经济学原理》曼昆(两册,很好读)
哲学:(少儿不宜,以免影响马哲成绩)
(以下4本读过之后未必能立刻理解,不懂的直接跳过留待以后消化,不必钻牛尖。)
1、《苏菲的世界》当作纯小说看好了,哲学史部分可用教材替代。
2、《西方哲学简史》(较薄)赵敦华;这是目前国内通用教材,作者是牛人,如果不被拿来考试的话是本很好的书。主要读笛卡尔,休谟,康德部分。其他部分了解。《现代西方哲学新编》是其后续。罗素《西方哲学史》或其简写本——不推荐,但可以考虑。
http://ishare.iask.sina.com.cn/f/5695503.html?from=isnom
3、《康德》(超薄)主要读认识论部分
4、《波普》(超薄)
上面两本是简介性质的黄色小册子,中华书局,作者是美国人(私下推荐《尼采》、《克尔凯廓尔》、《 萨特》,但和主题无关)
(进化论):
5、《裸猿》莫里斯,这个太幽默了。http://ishare.iask.sina.com.cn/f/5553656.html(随便看看)
6、《自私的基因》理查德·道金斯,(必读,看主干,例证省略)这个东西很通俗,会颠覆人性观,心情 不好时勿读。(读过之后可以阅读《克尔凯廓尔》和《萨特》作为补救)
《心理评估》第五章,智力理论PPT
http://www.doc88.com/p-77848640221.html
此外还有数学及计算机类的读物
由Pallashadow提供
『玖』 学习人工智能怎么入门
这两年人工智能发展很快,从之前的谷歌AlphaGo机器人战胜世界围棋冠军,到网络无人车,京东和亚马逊的无人仓库分拨中心,还有很多人工智能的相关应用,可见人工智能的前景一片大好,于是就有很多人想要去进行人工智能学习。人工智能学习路线推荐给你:
阶段一是Python语言(用时5周,包括基础语法、面向对象、高级课程、经典课程);阶段二是Linux初级(用时1周,包括Linux系统基本指令、常用服务安装);阶段三是Web开发之Diango(5周+2周前端+3周diango);阶段四是Web开发之Flask(用时2周);
阶段五是Web框架之Tornado(用时1周);阶段六是docker容器及服务发现(用时2周);阶段七是爬虫(用时2周);阶段八是数据挖掘和人工智能(用时3周)。
在这里,小编还想给大家推荐一本人工智能学习必备书籍:《人工智能基础教程(第2版)》系统地阐述了人工智能的基本原理、实现技术及其应用,全面地反映了国内外人工智能研究领域的最新进展和发展方向。
《人工智能基础教程(第2版)》共18章,分为4个部分,第1部分是搜索与问题求解,系统地叙述了人工智能中各种搜索方法求解的原理和方法;
第2部分为知识与推理,讨论各种知识表示和处理技术、各种典型的推理技术,还包括非经典逻辑推理技术和非协调逻辑推理技术;
第3部分为学习与发现,讨论传统的机器学习算法、神经网络学习算法、数据挖掘和知识发现技术;
第4部分为领域应用,这些内容能够使读者对人工智能的基本概念和人工智能系统的构造方法有一个比较清楚的认识,对人工智能研究领域里的最新成果有所了解。
《人工智能基础教程(第2版)》强调先进性、实用性和可读性,可作为计算机、信息处理、自动化和电信等it相关专业的高年级本科生和研究生学习人工智能的教材,也可供从事计算机科学研究、开发和应用的教学和科研人员参考。
『拾』 学习人工智能,需要什么数学基础
需要必备的知识有:
1、线性代数:如何将研究对象形式化?
2、概率论:如何描述统计规律?
3、数理统计:如何以小见大?
4、最优化理论: 如何找到最优解?
5、信息论:如何定量度量不确定性?
6、形式逻辑:如何实现抽象推理?
7、线性代数:如何将研究对象形式化?