大数据起始计量单位
❶ 大数据时代有哪些主要特点
最早提出"大数据"时代到来的是全球知名咨询公司麦肯锡,麦肯锡称:"数据,已经渗透到当今每一个行业和业务职能领域,成为重要的生产因素。人们对于海量数据的挖掘和运用,预示着新一波生产率增长和消费者盈余浪潮的到来。"
"大数据"在物理学、生物学、环境生态学等领域以及军事、金融、通讯等行业存在已有时日,却因为近年来互联网和信息行业的发展而引起人们关注。
1.数据量大
大数据的起始计量单位至少是P(1000个T)、E(100万个T)或Z(10亿个T)。
2.类型繁多
包括网络日志、音频、视频、图片、地理位置信息等等,多类型的数据对数据的处理能力提出了更高的要求。
3.价值密度低
如随着物联网的广泛应用,信息感知无处不在,信息海量,但价值密度较低,如何通过强大的机器算法更迅速地完成数据的价值“提纯”,是大数据时代亟待解决的难题。
4.速度快、时效高
第四个特征是处理速度快,时效性要求高。这是大数据区分于传统数据挖掘最显著的特征。
既有的技术架构和路线,已经无法高效处理如此海量的数据,而对于相关组织来说,如果投入巨大采集的信息无法通过及时处理反馈有效信息,那将是得不偿失的。可以说,大数据时代对人类的数据驾驭能力提出了新的挑战,也为人们获得更为深刻、全面的洞察能力提供了前所未有的空间与潜力。[6]
❷ 大数据产生的背景哪些
“大数据”在物理学、生物学、环境生态学等领域以及军事、金融、通讯等行业存在已有时日,近年来互联网和信息行业的发展而引起人们关注。
随着计算机和信息技术的迅猛发展和普及应用,行业应用系统的规模迅速扩大,行业应用所产生的数据呈爆炸性增长。
动辄达到数百TB甚至数十至数百PB规模的行业,企业大数据已远远超出了现有传统的计算技术和信息系统的处理能力,因此,寻求有效的大数据处理技术、方法和手段已经成为现实世界的迫切需求。
人们将越来越多的意识到数据对企业的重要性。大数据时代对人类的数据驾驭能力提出了新的挑战,也为人们获得更为深刻、全面的洞察能力提供了前所未有的空间与潜力。
(2)大数据起始计量单位扩展阅读:
现在的社会是一个高速发展的社会,科技发达,信息流通,人们之间的交流越来越密切,生活也越来越方便,大数据就是这个高科技时代的产物。
随着云时代的来临,大数据(Big
data)也吸引了越来越多的关注。大数据(Big
data)通常用来形容一个公司创造的大量非结构化和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像MapRece一样的框架来向数十、数百或甚至数千的电脑分配工作。
在现今的社会,大数据的应用越来越彰显他的优势,它占领的领域也越来越大,电子商务、O2O、物流配送等,各种利用大数据进行发展的领域正在协助企业不断地发展新业务,创新运营模式。有了大数据这个概念,对于消费者行为的判断,产品销售量的预测,精确的营销范围以及存货的补给已经得到全面的改善与优化。
“大数据”在互联网行业指的是这样一种现象:互联网公司在日常运营中生成、累积的用户网络行为数据。这些数据的规模是如此庞大,以至于不能用G或T来衡量。
❸ 大数据4v是指哪四个
大数据的4V,就是“容量大Volume”“多样性Variety”“价值高Value”“速度快Velocity”
现在已经有5V了版
一、Volume:数据量大,包括权采集、存储和计算的量都非常大。大数据的起始计量单位至少是P(1000个T)、E(100万个T)或Z(10亿个T)。
二、Variety:种类和来源多样化。包括结构化、半结构化和非结构化数据,具体表现为网络日志、音频、视频、图片、地理位置信息等等,多类型的数据对数据的处理能力提出了更高的要求。
三、Value:数据价值密度相对较低,或者说是浪里淘沙却又弥足珍贵。随着互联网以及物联网的广泛应用,信息感知无处不在,信息海量,但价值密度较低,如何结合业务逻辑并通过强大的机器算法来挖掘数据价值,是大数据时代最需要解决的问题。
四、Velocity:数据增长速度快,处理速度也快,时效性要求高。比如搜索引擎要求几分钟前的新闻能够被用户查询到,个性化推荐算法尽可能要求实时完成推荐。这是大数据区别于传统数据挖掘的显著特征。
五、Veracity:数据的准确性和可信赖度,即数据的质量。
❹ 大数据学什么
大家经常听到“大数据”这个词,仿佛带了一个“大”字我们就难以理解其中的含义。那么,大数据是什么意思呢?
大数据又称巨量数据集合,指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
大数据是什么意思?
大数据指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
大家经常听到“大数据”这个词,仿佛带了一个“大”字我们就难以理解其中的含义。那么,大数据是什么意思呢?
大数据又称巨量数据集合,指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
大数据特点
业界将大数据的特征归纳为4个“V”(量Volume,多样Variety,价值Value,速Velocity),或者说特点有四个层面:
一,数据体量巨大。
大数据的起始计量单位至少是P(1000个T)、E(100万个T)或Z(10亿个T)。
二,数据类型繁多。
比如,网络日志、视频、图片、地理位置信息等等。
三,价值密度低,商业价值高。
四,处理速度快。
末尾这一点也是和传统的数据挖掘技术有着本质的不同。供参考。
❺ 大数据究竟是什么
大数据究竟是什么?怎样认识并读懂大数据(1)
大数据究竟是什么?怎样认识并读懂大数据?身边很多IT人对于这些热门的新技术、新趋势往往趋之若鹜却又很难说的透彻,如果你问他大数据和你有什么关系?估计很少能说出一二三来。究其原因,一是因为大家对新技术有着相同的原始渴求,至少知其然在聊天时不会显得很“土鳖”;二是在工作和生活环境中真正能参与实践大数据的案例实在太少了,所以大家没有必要花时间去知其所以然。
如果你说大数据就是数据大,或者侃侃而谈4个V,也许很有深度的谈到BI或预测的价值,又或者拿Google和Amazon举例,技术流可能会聊起Hadoop和Cloud Computing,不管对错,只是无法勾勒对大数据的整体认识,不说是片面,但至少有些管窥蠡测、隔衣瘙痒了。……也许,“解构”是最好的方法。
怎样结构大数据?
首先,我认为大数据就是互联网发展到现今阶段的一种表象或特征而已,没有必要神话它或对它保持敬畏之心,在以云计算为代表的技术创新大幕的衬托下,这些原本很难收集和使用的数据开始容易被利用起来了,通过各行各业的不断创新,大数据会逐步为人类创造更多的价值。
其次,想要系统的认知大数据,必须要全面而细致的分解它,我着手从三个层面来展开:
第一层面是理论,理论是认知的必经途径,也是被广泛认同和传播的基线。我会从大数据的特征定义理解行业对大数据的整体描绘和定性;从对大数据价值的探讨来深入解析大数据的珍贵所在;从对大数据的现在和未来去洞悉大数据的发展趋势;从大数据隐私这个特别而重要的视角审视人和数据之间的长久博弈。
第二层面是技术,技术是大数据价值体现的手段和前进的基石。我将分别从云计算、分布式处理技术、存储技术和感知技术的发展来说明大数据从采集、处理、存储到形成结果的整个过程。
第三层面是实践,实践是大数据的最终价值体现。我将分别从互联网的大数据,政府的大数据,企业的大数据和个人的大数据四个方面来描绘大数据已经展现的美好景象及即将实现的蓝图。
大数据相关的理论
最早提出大数据时代到来的是麦肯锡:“数据,已经渗透到当今每一个行业和业务职能领域,成为重要的生产因素。人们对于海量数据的挖掘和运用,预示着新一波生产率增长和消费者盈余浪潮的到来。”
业界(IBM 最早定义)将大数据的特征归纳为4个“V”(量Volume,多样Variety,价值Value,速Velocity),或者说特点有四个层面:第一,数据体量巨大。大数据的起始计量单位至少是P(1000个T)、E(100万个T)或Z(10亿个T);第二,数据类型繁多。比如,网络日志、视频、图片、地理位置信息等等。第三,价值密度低,商业价值高。第四,处理速度快。最后这一点也是和传统的数据挖掘技术有着本质的不同。
其实这些V并不能真正说清楚大数据的所有特征,下面这张图对大数据的一些相关特性做出了有效的说明。
古语云:三分技术,七分数据,得数据者得天下。先不论谁说的,但是这句话的正确性已经不用去论证了。维克托·迈尔-舍恩伯格在《大数据时代》一书中举了百般例证,都是为了说明一个道理:在大数据时代已经到来的时候要用大数据思维去发掘大数据的潜在价值。书中,作者提及最多的是Google如何利用人们的搜索记录挖掘数据二次利用价值,比如预测某地流感爆发的趋势;Amazon如何利用用户的购买和浏览历史数据进行有针对性的书籍购买推荐,以此有效提升销售量;Farecast如何利用过去十年所有的航线机票价格打折数据,来预测用户购买机票的时机是否合适。
那么,什么是大数据思维?维克托·迈尔-舍恩伯格认为,1-需要全部数据样本而不是抽样;2-关注效率而不是精确度;3-关注相关性而不是因果关系。
阿里巴巴的王坚对于大数据也有一些独特的见解,比如,
“今天的数据不是大,真正有意思的是数据变得在线了,这个恰恰是互联网的特点。”
“非互联网时期的产品,功能一定是它的价值,今天互联网的产品,数据一定是它的价值。”
“你千万不要想着拿数据去改进一个业务,这不是大数据。你一定是去做了一件以前做不了的事情。”
特别是最后一点,我是非常认同的,大数据的真正价值在于创造,在于填补无数个还未实现过的空白。
有人把数据比喻为蕴藏能量的煤矿。煤炭按照性质有焦煤、无烟煤、肥煤、贫煤等分类,而露天煤矿、深山煤矿的挖掘成本又不一样。与此类似,大数据并不在“大”,而在于“有用”。价值含量、挖掘成本比数量更为重要。
价值探讨
大数据是什么?投资者眼里是金光闪闪的两个字:资产。比如,Facebook上市时,评估机构评定的有效资产中大部分都是其社交网站上的数据。
如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”
。
Target 超市以20多种怀孕期间孕妇可能会购买的商品为基础,将所有用户的购买记录作为数据来源,通过构建模型分析购买者的行为相关性,能准确的推断出孕妇的具体临盆时间,这样Target的销售部门就可以有针对的在每个怀孕顾客的不同阶段寄送相应的产品优惠卷。
Target的例子是一个很典型的案例,这样印证了维克托·迈尔-舍恩伯格提过的一个很有指导意义的观点:通过找出一个关联物并监控它,就可以预测未来。Target通过监测购买者购买商品的时间和品种来准确预测顾客的孕期,这就是对数据的二次利用的典型案例。如果,我们通过采集驾驶员手机的GPS数据,就可以分析出当前哪些道路正在堵车,并可以及时发布道路交通提醒;通过采集汽车的GPS位置数据,就可以分析城市的哪些区域停车较多,这也代表该区域有着较为活跃的人群,这些分析数据适合卖给广告投放商。
❻ 大数据的4V+1O指的是什么
大数据的特征(4V+1O):
数据量大(Volume)。第一个特征是数据量大,包括采集、存储和计算的量都非常大。大数据的起始计量单位至少是P(1000个T)、E(100万个T)或Z(10亿个T)。
类型繁多(Variety)。第二个特征是种类和来源多样化。包括结构化、半结构化和非结构化数据,具体表现为网络日志、音频、视频、图片、地理位置信息等等,多类型的数据对数据的处理能力提出了更高的要求。
价值密度低(Value)。第三个特征是数据价值密度相对较低,或者说是浪里淘沙却又弥足珍贵。随着互联网以及物联网的广泛应用,信息感知无处不在,信息海量,但价值密度较低,如何结合业务逻辑并通过强大的机器算法来挖掘数据价值,是大数据时代最需要解决的问题。
速度快时效高(Velocity)。第四个特征数据增长速度快,处理速度也快,时效性要求高。比如搜索引擎要求几分钟前的新闻能够被用户查询到,个性化推荐算法尽可能要求实时完成推荐。这是大数据区别于传统数据挖掘的显著特征。
数据是在线的(Online)。数据是永远在线的,是随时能调用和计算的,这是大数据区别于传统数据最大的特征。现在我们所谈到的大数据不仅仅是大,更重要的是数据变的在线了,这是互联网高速发展背景下的特点。比如,对于打车工具,客户的数据和出租司机数据都是实时在线的,这样的数据才有意义。如果是放在磁盘中而且是离线的,这些数据远远不如在线的商业价值大。
❼ “大数据”,就是很“大”的数据么
大数据技术是指在巨量的数据资源中提取到有用的部分加以分析和处理,大数据技术的特点是:
数据量大(Volume)。第一个特征是数据量大,包括采集、存储和计算的量都非常大。大数据的起始计量单位至少是P(1000个T)、E(100万个T)或Z(10亿个T)。
类型繁多(Variety)。第二个特征是种类和来源多样化。包括结构化、半结构化和非结构化数据,具体表现为网络日志、音频、视频、图片、地理位置信息等等,多类型的数据对数据的处理能力提出了更高的要求。
价值密度低(Value)。第三个特征是数据价值密度相对较低,或者说是浪里淘沙却又弥足珍贵。随着互联网以及物联网的广泛应用,信息感知无处不在,信息海量,但价值密度较低,如何结合业务逻辑并通过强大的机器算法来挖掘数据价值,是大数据时代最需要解决的问题。
速度快时效高(Velocity)。第四个特征数据增长速度快,处理速度也快,时效性要求高。比如搜索引擎要求几分钟前的新闻能够被用户查询到,个性化推荐算法尽可能要求实时完成推荐。这是大数据区别于传统数据挖掘的显著特征。
❽ 什么是大数据时代
大数据时代是数据,已经渗透到当今每一个行业和业务职能领域,成为重要的生产因素。人们对于海量数据的挖掘和运用,预示着新一波生产率增长和消费者盈余浪潮的到来。
“大数据”在物理学、生物学、环境生态学等领域以及军事、金融、通讯等行业存在,却因为来自互联网和信息行业的发展而引起人们关注。
进入2012年,大数据(big data)一词越来越多地被提及,人们用它来描述和定义信息爆炸时代产生的海量数大数据时代来临据,并命名与之相关的技术发展与创新。
大数据时代已经上过《纽约时报》《华尔街日报》的专栏封面,进入美国白宫官网的新闻,现身在国内一些互联网主题的讲座沙龙中,甚至被嗅觉灵敏的国金证券、国泰君安、银河证券等写进了投资推荐报告。
(8)大数据起始计量单位扩展阅读:
大数据时代特征:
1、数据量大(Volume)
第一个特征是数据量大。大数据的起始计量单位至少是P(1000个T)、E(100万个T)或Z(10亿个T)。
2、类型繁多(Variety)
第二个特征是数据类型繁多。包括网络日志、音频、视频、图片、地理位置信息等等,多类型的数据对数据的处理能力提出了更高的要求。
3、价值密度低(Value)
第三个特征是数据价值密度相对较低。如随着物联网的广泛应用,信息感知无处不在,信息海量,但价值密度较低,如何通过强大的机器算法更迅速地完成数据的价值“提纯”,是大数据时代亟待解决的难题。
4、速度快、时效高(Velocity)
第四个特征是处理速度快,时效性要求高。这是大数据区分于传统数据挖掘最显著的特征。
❾ “大数据(Big Data)”一词为什么变得无人知晓
那是因为数据现在集中在了高薪行业,而现在的很多平民只是在围绕着实体销售这一块,就算是她们接触,她们也不知道自己运用的东西就是大数据。
特点:
1、第一,数据体量巨大。从TB级别,跃升到PB级别。
2、第二,数据类型繁多。前文提到的网络日志、视频、图片、地理位置信息等等。
3、第三,价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。
4、第四,处理速度快。1秒定律。
❿ 什么是“大数据”的真正含义
如果你说大数据就是数据大,或者侃侃而谈4个V,也许很有深度的谈到BI或预测的价值,又或者拿Google和Amazon举例,技术流可能会聊起Hadoop和Cloud Computing,不管对错,只是无法勾勒对大数据的整体认识,不说是片面,但至少有些管窥蠡测、隔衣瘙痒了。也许,“解构”是最好的方法。
怎样结构大数据?
首先,大数据就是互联网发展到现今阶段的一种表象或特征而已,没有必要神话它或对它保持敬畏之心,在以云计算为代表的技术创新大幕的衬托下,这些原本很难收集和使用的数据开始容易被利用起来了,通过各行各业的不断创新,大数据会逐步为人类创造更多的价值。
其次,想要系统的认知大数据,必须要全面而细致的分解它,我们着手从三个层面来展开:
第一层面是理论,理论是认知的必经途径,也是被广泛认同和传播的基线。我会从大数据的特征定义理解行业对大数据的整体描绘和定性;从对大数据价值的探讨来深入解析大数据的珍贵所在;从对大数据的现在和未来去洞悉大数据的发展趋势;从大数据隐私这个特别而重要的视角审视人和数据之间的长久博弈。
第二层面是技术,技术是大数据价值体现的手段和前进的基石。我将分别从云计算、分布式处理技术、存储技术和感知技术的发展来说明大数据从采集、处理、存储到形成结果的整个过程。
第三层面是实践,实践是大数据的最终价值体现。我将分别从互联网的大数据,政府的大数据,企业的大数据和个人的大数据四个方面来描绘大数据已经展现的美好景象及即将实现的蓝图。
和大数据相关的理论?
1、 特征定义
最早提出大数据时代到来的是麦肯锡:“数据,已经渗透到当今每一个行业和业务职能领域,成为重要的生产因素。人们对于海量数据的挖掘和运用,预示着新一波生产率增长和消费者盈余浪潮的到来。”
业界(IBM 最早定义)将大数据的特征归纳为4个“V”(量Volume,多样Variety,价值Value,速Velocity),或者说特点有四个层面:第一,数据体量巨大。大数据的起始计量单位至少是P(1000个T)、E(100万个T)或Z(10亿个T);第二,数据类型繁多。比如,网络日志、视频、图片、地理位置信息等等。第三,价值密度低,商业价值高。第四,处理速度快。最后这一点也是和传统的数据挖掘技术有着本质的不同。
古语云:三分技术,七分数据,得数据者得天下。先不论谁说的,但是这句话的正确性已经不用去论证了。维克托·迈尔-舍恩伯格在《大数据时代》一书中举了百般例证,都是为了说明一个道理:在大数据时代已经到来的时候要用大数据思维去发掘大数据的潜在价值。书中,作者提及最多的是Google如何利用人们的搜索记录挖掘数据二次利用价值,比如预测某地流感爆发的趋势;Amazon如何利用用户的购买和浏览历史数据进行有针对性的书籍购买推荐,以此有效提升销售量;Farecast如何利用过去十年所有的航线机票价格打折数据,来预测用户购买机票的时机是否合适。
那么,什么是大数据思维?维克托·迈尔-舍恩伯格认为,1-需要全部数据样本而不是抽样;2-关注效率而不是精确度;3-关注相关性而不是因果关系。
阿里巴巴的王坚对于大数据也有一些独特的见解,比如,
“今天的数据不是大,真正有意思的是数据变得在线了,这个恰恰是互联网的特点。”
“非互联网时期的产品,功能一定是它的价值,今天互联网的产品,数据一定是它的价值。”
“你千万不要想着拿数据去改进一个业务,这不是大数据。你一定是去做了一件以前做不了的事情。”
特别是最后一点,我是非常认同的,大数据的真正价值在于创造,在于填补无数个还未实现过的空白。