① 企业 大数据有哪些方面的应用

如果从行业来来分有银行、源证券、保险、税务、地产、电信、制造、零售等,这方面商业智能应用的比较多,FineBI的官网上有这些案例,本身也是做这块的。
如果从具体应用功能来分,有用于精准营销、数据风控、决策支持、产品运营方面,可以去了解一下。

② 为什么大数据对企业管理是重要的

企业的大数据管理分为两个方面
第一是企业自身的数据管理,例如企业的客户,产品,销售,库存等数据
第二个是企业的外部信息数据,这方面的数据包括产品服务的评价,情报信息,行业信息的收集等。
企业内部的信息就不提了
谈一下外部信息吧
企业在经营过程中往往需要收集各种信息,这新信息9成以上是在公开的网络上的,但茫茫是信息海洋,怎么能找得完?

因此,目前很多企业,政府单位就 会采用信息采集系统,舆情监测技术来作为辅助。
以下是这种 技术的简介

③ 大数据对企业有什么用处

01、预测分析

这是最常见的使用。机器学习为预测分析创造了许多机会。机器可以分析历史数据、探知模式、预测将来发生某些事件的可能性。举个例子,如果您在全国各地拥有连锁餐厅,则可以通过大数据预测哪些餐厅的顾客数量可能少于预期。因此,您可以专注于这些餐厅的经营,防患未然。


02、诊断分析


每当出现一些问题时,企业都需要知道问题的根源。这正是机器真正擅长的。数据分析能够帮助企业追根溯源,找到事件之间的相关性,以便将来避免类似问题的发生。


03、查找未知元素之间的关系


大数据能够帮助企业找到任何元素或事件之间的关系,即使看起来它们之间没有任何关系。这有什么用呢?例如,您通过数据发现销售额与销售人员数量的变化无关,在这种情况下,如果不影响其他业务领域,您可能希望减少员工人数。


04、经营监控


实时监控也是一项任务,需要计算机处理大量数据。他们还需要迅速做到这一点。借助大数据,我们可以监控任何事件。例如,营销人员可以看到他们的不同细分受众群对广告系列的反应。


05、规范性分析


这是快速发展的非常有前景的分析领域。规范性分析是基于预测分析的。但是,这种方法使企业不仅可以预测某些事件,还可以为每种可能的情况找到最有效的解决方案。


关于大数据对企业有什么用处,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

④ 什么是企业大数据

企业大数据是指企业数据的一个集合,比如多多中标中就有一个功能是用企业大数据可以查企业的信用资质在建项目等信息。

⑤ 企业对金融支持大数据产业发展有哪些意见或是政策建议

乐思软件认为:大数据能够帮助企业预测经济形势、把握市场态势、了解消费需求、提高研发效率,不仅具有巨大的潜在商业价值,而且为企业提升竞争力提供了新思路。

具体来说,大数据对企业的作用可以分为以下几个方面:

企业决策大数据化。现代企业大都具备决策支持系统,以辅助决策。但现行的决策支持系统仅搜集部分重点数据,数据量小、数据面窄。企业决策大数据化的基础是企业信息数字化,重点是数据的整理分析。首先,企业需要进行信息数字化采集系统的更新升级。按各决策层级的功能建立数据采集系统,以横向、纵向、实时三维模式广泛采集数据。其次,企业需要推进决策权力分散化、前端化、自动化。对多维度的数据进行提炼整合,在人为影响起主要作用的顶层,提高决策指标信息含量和科学性;在人为影响起次要作用的底层,推进决策指标量化,完善决策支持系统和决策机制。大数据决策机制让数据说话,可以减少人为干扰因素,提高决策精准度。

成本控制大数据化。目前,很多企业在采购、物流、储存、生产、销售等环节引入了成本控制系统,但系统间融合度较低。企业可对现有成本控制系统进行改造升级,打造大数据综合成本控制系统。其一,在成本控制的全过程采集数据,以求最大限度地描述事物,实现信息数字化、数据大量化。其二,推进成本控制标准、控制机理系统化。量化指标,实现成本控制自动化,减少人为因素干扰;细化指标,以获取更精确的数据。其三,构建综合成本控制系统,将成本控制所涉及的从原材料采购到产品生产、运输、储存、销售等环节有机结合起来,形成一个综合评价体系,为成本控制提供可靠依据。成本控制大数据化以预先控制为主、过程控制为中、产后控制为辅的方式,可以最大限度降低企业运营成本。

服务体系大数据化。品牌和服务是企业的核心竞争力,服务体系直接影响企业的生存发展。优化服务体系的重点是健全沟通机制、联络机制和反馈机制,利用大数据优化服务体系的关键是找到服务体系中存在的问题。首先,加强数据收集,对消费者反馈的信息进行分类分析,找到服务体系的问题,然后对症下药,建立高效服务机制,提高服务效率。其次,将服务方案移到线上,打造自动化服务系统。快速分析、比对消费者服务需求信息,比对成功则自动进入服务程序,实现快速处理;比对失败则转入人工服务系统,对新服务需求进行研究处理,并快速将新服务机制添加至系统,优化服务系统。服务体系大数据化,可以实现服务体系的高度自动化,最大程度提高服务质量和效率。

产品研发大数据化。产品研发存在较高风险。大数据能精确分析客户需求,降低风险,提高研发成功率。产品研发的主要环节是消费需求分析,产品研发大数据化的关键环节是数据收集、分类整理和分析利用。企业官网的消费者反馈系统、贴吧、论坛、新闻评价体系等是消费者需求信息的主要来源,应注重从中收集数据。同时,可与论坛、贴吧、新闻评价体系合作构建消费者综合服务系统,完善消费者信息反馈机制,实现信息收集大量化、全面化、自动化,为产品研发提供信息源。然后,对收集的非结构化数据进行分类整理,以达到精确分析消费需求、缩短产品研发周期、提高研发效率的目的。产品研发大数据化,可以精准分析消费者需求,提高产品研发质量和效率,使企业在竞争中占据优势。

⑥ 企业如何运用大数据战略快速发展

运用大数据战略实践的关键问题不是数据规模或高精尖技术,而是如何利用数据迅速产生价值,如何用数据改变企业的经营管理方式。企业越早从数据中洞察事实,并据此快速做出行动越早受益。这其中关键问题的确不是数据的大小,而是如何利用数据迅速产生价值。
一、用数据为经营管理提供帮助
信息化时代市场竞争进一步加剧,企业的运作越来越复杂,充满了各种风险和不确定性,企业核心能力的主要差异越来越体现在各个细节之中。若仍依靠定性和数据统计简单分析,凭经验大致判断问题形成改进方案的做法,难以在现代市场竞争中取得优势地位。用数据建模的方式自动识别问题并采取行动,可以更好地为企业经营管理服务。未来的金融竞争一定会比拼数据建模能力,若不尽快在精准营销、风险识别、产品个性化定价等方面开展数据建模实践,就很难形成相应的核心竞争力。
二、数据应用要面向解决企业问题
企业为迎接数据时代的到来,需要建立一支数据分析队伍,并设置独立的部门。他们的职责任务就是用数据帮助寻找和解决企业经营管理中存在的问题,提升企业的核心竞争能力。
数据专业人员由于专业特点的局限,对业务知识掌握和理解存在缺陷。数据人员要主动学习业务知识,尝试在某一局部用数据发现和解决业务问题,然后与业务人员交流讨论,看是否能够对业务有些帮助。数据应用先不要涉及解决复杂的问题,避免起步阶段迟迟无法打开局面。最好从解决简单问题做起,可以考虑直接引入其他外部公司的成功实践,迅速产生实际成果,让大家快速看到数据应用带来的成效。
三、面向问题收集和管理数据
传统金融行业因为过去IT资源相对昂贵,本着节省开销的考虑,只记录与金融交易相关的数据,这造成其数据所覆盖的范围较窄,难以支撑大规模的数据应用。
现代IT技术降低了IT成本,同时随着数据应用带来价值的提升,各金融企业扩大数据收集范围和粒度的意识普遍提高,为更大规模和更加深入的数据应用创造了条件。
四、确定数据的拥有者
企业会产生大量数据,不同业务单元和部门所产生的数据不同,数据使用的情况也不同,很可能会形成企业内的数据交叉使用。为避免内部的数据使用冲突造成数据的混乱,就需要明确各数据的主人,赋予其管理数据的责任和权利。数据拥有者要管理保护好自己的数据,同时要考虑如何让这些数据产生更大的价值。
五、共享数据平台支持服务
数据应用需要配套的软硬件环境支持,需要在企业内建设一套共享的数据应用平台环境,并安排专业团队提供服务支持。
大数据工作的重点不是数据规模或高精尖技术,而在于用数据改变企业的经营管理方式。企业越早从数据中洞察事实,并据此快速做出行动越早受益。不要将资源投放在建设豪华的设备环境和队伍上面,不用先准备大规模数据,只要开始实践就会有收获。

⑦ 国家大数据标准将出台,企业建设大数据之路如何走

一、数据基础平台基础的数据平台建设工作,包含数据平台建设,数据规范,数据仓库、产品数据规范,产品ID,用户ID,统一SDK等。很多公司的数据无法有效利用,就是缺乏统一规范,产品数据上报任由开发按照自己的理解和习惯上报,没有标准化的SDK和上报协议,并且数据散落在各个部门产品的服务器,无法构建结构化的数据仓库。做数据平台的架构,很多人会理解为高大上的技术活,其实整个数据平台价值的体现,需要公司各个部门的配合,例如关键数据指标体系的建立,需要从各个部门业务指标进行提炼,并得到业务部门认可。常见的关键指标有:DAU、PCU、WAU、MAU、按天留存率(1-30日留存)、累计留存率(7日、14日、30日累计留存率),新增用户,有效新增用户,活跃转化率,付费转化率,收入指标,ARPU人均收入,渠道效果数据等。互联网是个神奇的大网,大数据开发和软件定制也是一种模式,这里提供最详细的报价,如果你真的想做,可以来这里,这个手机的开始数字是一八七中间的是三儿零最后的是一四二五零,按照顺序组合起来就可以找到,我想说的是,除非你想做或者了解这方面的内容,如果只是凑热闹的话,就不要来了。 二、数据报表与可视化在第一层级中,进行数据指标体系规范,统一定义,统一维度区分,就可以很方便的进行标准化可配置数据报表设计,直观的可视化输出设计,包括行为、收入、性能、质量等多种数据类别。在PPT中以友盟、迅雷、网络、腾讯等公司的数据报表体系进行详细讲解。 三、产品与运营分析在建立数据平台和可视化基础上,对已有的用户行为、收入数据等进行各种分析,输出日报、周报、月报、各种专题分析报告。常见的数据分析工作如下:1.A/BTEST进行产品分析优化;2.运用漏斗模型进行用户触达分析,如TIPS、广告等曝光到活跃的转化;3.收入效果监控与分析,包含付费转化率、渠道效果数据等;4.业务长期健康度分析,例如从用户流动模型、产品生命周期分析产品成长性和健康度;5.营销推广活动的实时反馈;用户画像也是常见的数据分析方式,包括用户如性别、年龄、行为、收入、兴趣爱好、消费行为、上网行为、渠道偏好、行为喜好、生活轨迹与位置等,反映用户各种特征,以达到全面的了解用户,针对性的为用户提供个性化服务的目的,通常每半年做一次用户画像的专题分析。常用分析工具:EXCLE,SPSS,SAS,EnterpriseMiner,Clementine,STATISTICA。个人用的比较多的是:EXCEL和SPSS。 四、精细化运营平台基于数据基础上搭建的精细化运营平台,主要的平台逻辑多数是进行用户细分,商品和服务细分,通过多种推荐算法的组合优化进行商品和服务的个性化推荐。另外还有针对不同产品生命周期,用户生命周期构建的产品数据运营体系。 五、数据产品广义的数据产品非常多,例如搜索类,天气预报类等等。这里主要讲狭义的数据产品,以BAT三家公司的数据产品为例进行分享。腾讯:广点通、信鸽阿里:数据魔方、淘宝情报、淘宝指数、在云端网络:网络预测、网络统计、网络指数、网络司南、网络精算 六、战略分析与决策战略分析与决策层,的是跟很多传统的战略分析、经营分析层面的方法论相似,最大的差异是数据来自于大数据。有很多企业错误的把“业务运营监控层”和“用户/客户体验优化层”做的事情放在经营分析或者战略分析层来做。傅志华认为“业务运营监控层”和“用户/客户体验优化层”的是通过机器、算法和数据产品来实现的,“战略分析”、“经营分析”的是人来实现。很多企业把机器能做的事情交给了人来做,这样导致发现问题的效率较低。建议是,能用机器做的事情尽量用机器来做好“业务运营监控层”和“用户/客户体验优化层”,在此基础上让人来做人类更擅长的经验分析和战略判断。在变化极快的互联网领域,在业务的战略方向选择上,数据很难预测业务的大发展方向,如果有人说微信这个大方向是通过数据挖掘和分析研究出来,估计产品经理们会笑了。从本质上来说,数据在精细化营销和运营中能起到比较好的作用,但在产品策划、广告创意等创意性的事情上,起到的作用较小。但一旦产品创意出来,就可以通过灰度测试,数据验证效果了。

⑧ 企业必须掌握的三种大数据

企业必须掌握的三种大数据

当前国内核心三大消费群体70后、80后、90后,三者是受不同时代影响成长起来的,而三者之间消费理念、经济能力,以及消费需求存在十分鲜明的差异化。但随着时间的推移,三大主流人群未来所呈现的消费潜力必然呈现递增趋势。70后逐渐老化;80后正步入结婚生子的而立之年;90后正成为社会主流的新青年,那么广大用户年龄层次的差异,必然导致产品需求必然呈现层次化改变。
怎么找准用户的核心需求?这必然要源于用户的信息接收方式、消费行为习惯、选择购买方式等综合因素,才能保证做出最精准的决策。这些精准聚焦的用户行为,必然是需要通过观察广大用户全局数据,才能更有效的抓取某一类用户特征。没有一个品牌能够赢得所有用户,但你所能满足的受众必然是源于广大的用户。所有用户代表是市场需求的整体,而某一类目标用户代表的是市场需求的部分,整体是由部分组成。对于企业来说,核心是要迎合某一类用户,但怎么决策却需要根据市场需求的全局,以应对某一类用户需求的变局。根据用户大数据,以宏观视角,做围观决定,才能更好的融入用户群体。
竞争对手数据:以敌动决定我动
竞争是市场发展的自然规律,也是市场走向成熟的驱动力。没有竞争的行业最终都将因为缺乏创新力而灭亡,或是被替代。每一个行业有大数据,每个企业也是如此,它所做出的任何决定,比如新品上市、营销活动、广告轰炸等,都会被大数据所纪录。一个行业的繁荣与否,与行业内竞争有着直接的关联。而竞争不仅能够推动产品质量、技术等综合提升,还能加速服务的升级,同时带来关联的整套体系进化。因而,企业不能忽视竞争,更不能任何竞争对手的新品,或是每一个新进入者,除非你已经占据明显的垄断优势。
未来的竞争,不仅仅是线下传统渠道,线上互联网也将角逐的新阵地。那么,怎么制定有效的品牌营销策略,怎么制定合理的市场推广策略,怎么布局差异化的渠道网络?所有的核心优势的建立,必须清楚地认识竞争对手所处在的位置和方向,否则如果实力不足以撼动对手,那就可能被对手绞杀。因此,企业必须时刻警惕竞争对手的动态,保证时刻掌握敌情变化,以敏锐的做出有力回击。这就可以通过大数据的定期监测,保证获取最新的竞争信息,但这一信息必然不是某个竞争对手,而必须是对自身能够造成威胁的所有竞争者。掌握这些最有力的实时数据,企业就能够游刃有余的根据敌动决定我动。
无线端大数据:以即时谋划大势
未来,每一个企业都不可能脱离互联网与信息化,而更不能脱离即将主宰便捷化信息获取与消费购买的无线端。不论是目前国内5亿智能手机用户这一庞大的规模,且还在呈上升趋势,并即将转化为全民普及的趋势。还是2015年双十一的销售数据无线端格外抢眼,占据60%的购买量。这两方面都预示着未来的消费生活将是无线端的天下,更是随时随地便捷体验的天下。无线端,这不仅是一个超强的传播载体,更是一个超强的购买平台,你所能想到的都能通过IT技术实现。在这种大趋势下,每一个企业都应该谨慎客观的去考虑无线端的使用。
与此同时,手机已经成功主宰了大众的日常生活,60%的大众已经沦为手机重度依赖症患者。而互联网将所有用户不断割裂,但无线端却能将这所有被各类的若干群体的特征整体的呈现出来,这就是它的独特而又强大之处。无线端能够反应所有商品的销售数据,各类平台的时效数据,甚至各种用户的地域、年龄、喜好等综合与单项数据。这一切都能会呈现在一个数据后台,最终变成合理分析的依据。因而,无线端,不仅是企业的传播平台,也是企业的销售平台,更是获取即时数据的保障。未来是快节奏更新的社会,企业只有掌握无线端大数据,才能掌控即时的局势,从而谋划未来的发展大势。
大数据不仅是一场技术革命,一场经济变革,也是一场国家战略的变革。它所带来的是产业革命,更关乎每一个企业的生死,你需要做的就是尽可能的掌握它,并正确利用它,而不是排斥。大数据是发展的必然,但绝对不仅限于当前的表面应用,未来将发挥更深层次的作用。