人工智能在机械电子工程中的应用
㈠ 人工智能在机械制造方面的应用
机械方面:松下机械手焊接机,法拉克车辆总装机械手.
生活方面:各种智能机器机人.
科研: 水下机器人.
军工:排爆机器人.
现在.......多着呢...写不完
㈡ 人工智能是什么在机械领域有哪些应用最好说得通俗易懂一些。。不要复制粘贴的。。
人工智能也称为机器智能,由计算机应用系统来模拟人类智能活动的能力,以延伸人类智能的科学。而从学科角度讲,目前的人工智能是计算机科学的一个分支。说白了就是电脑在工业中的应用。机械领域的机器人等自动化设备的控制,都是其具体应用。
㈢ 人工智能大数据和机器学习在电气工程中有哪些应用
电气工程及其自动化
电气工程及其自动化(简:电气)本身就是一级学科,强电,含控制的知识。下属五个二级学科:电机与电器、电力系统及其自动化、高压与绝缘、电力电子与电力传动、电工理论与新技术。该专业本科一般按一级学科招生,研究生阶段按二级学科会有明显区分。本科专业课程安排、偏向,各个学校稍有不同,大致可分为:电力系统方向和传动方向,后者和控制交叉较多。工作偏重输变电、电机、电子器件制造(大功率,不是给手机啊电脑用的那种)与变流技术(整流 逆变 变频 斩波)。
自动化(研究生阶段对应一级学科:控制科学与工程),以弱控强,属于一个交叉性较强、宽口径的专业。这个专业我觉得更偏弱电,但和通信、电子科学技术又完全不同,偏重于工业控制。下属二级学科:控制理论与控制工程、检测技术与自动装置、系统工程、模式识别与智能系统、导航制导与控制、企业信息化系统与工程、生物信息学。
有些学校本科阶段把这俩专业放一起了,有的不是电气在本科期间,除了偏重于高压、继电保护、电力系统方向的部分,剩下的传动控制和自动化区别不大,我只能说专业基础课很多一样。从对二级学科的罗列可以看出来,只有在研究生期间,专业偏向才十分明显。甚至很多老牌的电气名校都是在电力系统和高压方向较强。
2. 电气工程及其自动化、自动化就业方向
电气工程及其自动化,有人的地方就有电嘛,就业口径宽是必然的。主要的就业领域是电力相关企业,电力系统方向去国家电网、供电局、电力设计院、各电厂、国电南瑞、中广核等等,总之与输变电有关的单位都可以;偏电力电子与传动的去电气公司、电机厂、工业生产企业都可以,诸如较有名的西门子、ABB、通用电气,特变电工等等;再者自动化,前面说了,口径很宽,从专业上说其重在控制,不在“发电及其输送的各个过程”,但是上面说的又都能去。半导体、嵌入式、PLC控制、PCB设计等等,制造业吧。
总的来说,对本科生这几个方向就业口径都挺宽,但能做的也非常基础,研发岗一般不要本科生这放在哪个专业都是一般性规则。电力系统更注重供电、输变电、相比其它更有针对性,能进电网也不错。
3.可否作码农或转向人工智能
人工智能未来将渗透到各个领域,但就解决的问题目标来说,AI和电气完全两码事。有的人把AI划到计算机科学下,我个人觉得是学科大交叉。如果一定要找一个最对口的专业,除了计算机,可能是“控制科学与工程”下的“模式识别与智能系统”(但那又怎样)。俗话说隔行如隔山,除非你本科就是计算机,其他专业差别不大
㈣ 机械电子工程可以往人工智能发展吗如果可以,需要学什么
人工智能的研究主要有三方面:
一是纯理论性的,以强人工智能或者神经网专络为研究方向属,这样的话,本科可以选择神经科学,也可以选修心理学、哲学、计算机科学
二是从算法层面对人工智能的优化,这也是大多数人现在对人工智能的理解,本科自然要学计算机科学了,但博弈论之类重视逻辑的小类别学科也有选修或者自学的必要。
第三种就是工业应用的方面。楼主的认识很对,这样主要应该学习自动化和机械控制。
不知楼主在国内还是国外读大学。
在国外,人工智能的理论研究还是很有价值的。国内嘛就别想了。
在国内,计算机是现在很火的专业不必多说。选机械控制专业的话就业前景非常好。
楼主你说喜欢硬件方面科技产品设计?若不是机械控制,人工智能目前还主要是研究算法层面的。电子工程这样的硬件专业目前对人工智能还没啥应用。
当然楼主有志于在国内研究神经网络那是祖国的骄傲啊^ ^
人工智能是一门很迷人的学科。希望楼主能找到适合自己的方向好好发展,带动我国的人工智能领域哦!
㈤ 机械电子工程专业能否参与人工智能的研究
读研的话机械领域和人工智能关系最密切的方向是机器视觉属于智能制造,机械电子更多是机器人,机电液一体化。本科的话除了人工智能专业,就数自动化更接近人工智能,如果想学就自己找书看,学软件,网上也有很多外国公司免费提供的教程。对了,现在的人工智能研究主要有几个大方向:机器视觉,机器学习,智能算法等
㈥ AI(人工智能)在机械领域有哪些应用
1.机械领域的主要应用:1.1 机械设计 机械设计实际上是一个模型的综合和分析的过程,它不仅包括大量的计算、分析、绘图等数值计算型工作;还包括拟定初始方案,选择最优方案,制定合理结构等方案设计工作。 目前, 有些企业已引入CAD/CAM 系统, 由于CAD/CAM系统对符号推理工作需要综合运用多种科学的专门知识和丰富的实践经验才能解决,这需要CAD/CAM系统具有智能性,因此,设计智能化已成为机械设计中一个很热门的研究课题之一,它把计算机从数值处理扩展到非数值处理,包括知识与经验的集成、推理和决策,力图使机械设计过程自动化,减少人类专家在设计过程中由于个人因素造成的不足。此外,与传统设计方法相比,专家系统在机械设计中有着不可比拟的优势,它不仅可以长期稳定工作、节省成本,还可以为专家知识特别是启发式知识提供存储手段和传授途径、易于继承。1.2 机械制造 在机械生产制造过程中,需要为工厂中所有的装配机器供应零件。目标可能由监控者提供,也可能由系统对当时状态做出评估而产生。智能系统怎样推断出适当的目标,然后构造试图达到目标的动作序列,这个过程通常称为规划(planning), 它是自动问题求解的特例,是人工智能研究的重要子领域。 此外,计算机集成加工系统(CIMS)和柔性加工系统(FMS)在近年来获得迅速发展。在一个复杂的加工过程中,不同条件下的多种操作是必要的。环境的不确定性以及系统软硬件的复杂性,向当代工程师们设计和实现有效的集成控制系统提出了挑战。为了把现有的Petri 网技术用于现代加工系统,需要开发一种新技术,把机器智能技术和Petri 网理论以及智能离散事件控制器连接起来。1.3 机械电子工程 在许多工程系统中,往往由于内部结构复杂,存在着对加工过程控制及故障诊断等方面的困难,一般的PID 等典型控制方法虽然能解决一些问题,但在一些场合已不能满足生产的要求,当前,典型的机电一体化产品- 数控机床、交流伺服驱动装置等正在向数字化、小型化、高精度等方向发展,为监控带来新的挑战,由于模糊神经网络控制不依赖控制对象和数学模型,具有较强的鲁棒性,是一种非线性的控制方法,在解决此类问题中有很好的优势。而专家系统主要用于复杂的机械系统,能够克服基于模型的故障诊断方法对模型的过分依赖性。1.4 机械系统故障诊断 对机械设备进行故障诊断主要是通过对设备敏感部位的信号利用传感器进行数据采集和特征提取,根据不同机械部件在不同时间和状态下具有不同的特征,来判断是否工作正常。它包含两方面的内容,即对系统运行状态进行监测和发现异常情况后对故障进行分析、诊断。在系统运行过程中,若某一时刻系统发生故障,领域专家可以凭借视觉、听觉、嗅觉、触觉或测量设备得到一些客观数据,并根据对系统结构和系统故障历史的深刻了解很快做出判断,确定故障的原因和部位。对于较为复杂的系统,这种基于专家系统的故障诊断方法尤为有效。2 人工智能在机械系统中的应用方法 应用机械系统的AI 技术传统上可以分为专家系统(ES)、人工神经网络(ANN)、模糊集理论(FST)和启发式搜索(GA)四类。2.1 专家系统(Expert System .ES) 专家系统是人工智能的主要分支之一。一个典型的专家系统由四部分组成:知识库、推理机、知识获取机制和人机界面。专家系统按其知识表达方式不同,可分为基于规则和基于框架的专家系统;按其推理方式不同可分为正向推理和逆向推理。在知识表达方面,利用产生式规则进行知识表达,一方面得有益于现有人工智能语言,另一方面,它的表达合乎人的心理逻辑,便于进行知识获取,利于人们接受,利用框架进行知识表达得到了越来越多的应用。在诊断推理方面,主要表现在对推理逻辑和推理模型的研究,在人工智能领域,存在着许多推理逻辑,在专家系统中广泛使用模糊推理逻辑降低系统复杂性,在机械系统故障诊断上能产生很好的效果。专家系统技术的研究和应用正以前所未有的速度在故障诊断、模拟仿真、自动控制、工艺编程、生产规划、产品设计等许多机械工程领域不断发展。随着研究工作的不断深入,一些新的技术方法和先进制造技术正融入机械工程专家系统技术的研究和应用中,不仅使知识表示、知识库构建、知识获取和推理模式等关键技术的研究取得了一定成果,还出现了一些集成式的新型专家系统,如神经网络专家系统、模糊专家系统、基于Internet 的专家系统、CAD 专家系统、CAPP 专家系统等。他们综合利用了专家系统启发性、透明性、灵活性以及具有处理不确定知识能力的特点,使机械工程专家系统的应用领域不断拓宽。2.2 人工神经网络(artificial neural network. ANN) 人工神经网络是模拟的生物激励系统,将一系列输入通过神经网络产生输出。这里输出、输入都是标准化的量,输出是输入的非线性函数,其值可由连接各神经元的权重改变,以获得期望的输出值,即所谓的训练过程。基于数值计算方法的神经网络,将已有数据和已知系统模式作样本,通过学习获得两者的映射关系,实现了对人类经验思维的模拟。 由于神经网络具有原则上容错、结构拓扑鲁棒、联想、推测、记忆、自适应、自学习、并行和处理复杂模式的功能,使其在工程实际存在着大量的多故障、多过程、突发性故障、庞大复杂机器和系统的监测及诊断中发挥着较大作用。 在机械系统的应用方式有:从模式识别角度应用神经网络作为分类器进行故障诊断;从预测角度应用神经网络作为动态预测模型进行故障预测;利用神经网络极强的非线性动态跟踪能力进行基于结构映射的故障诊断;从知识处理角度建立基于神经网络的诊断专家系统等。目前,为提高神经网络在实用中的学习和诊断性能,主要从神经网络模型本身改进和模块化模型诊断策略两方面开展研究;同时,与模糊逻辑的结合研究也是一个研究热点。2.3 模糊集理论(Fuzzy Sets Theory. FSN) 人的认知世界包含大量的不确定之时,需要对所获信息进行一定的模糊化处理,以减少问题的复杂度。1965 年Zadeh 创立的模糊集理论是处理不确定性的一种很好的方法。模糊逻辑可认为是多值逻辑的扩展,能够完成传统数学方法难以做到的近似推理。目前基于多类电量测试信息模糊融合的模拟电路故障诊断方法已经提出。基于K故障节点诊断法和最小标准差法的元件故障隶属函数构造方法,以及基于可测点电压与不同测试频率下电路增益的模糊信息融合诊断算法也已阐述。分别利用此两类测试信息及K 故障诊断法和最小标准差法,对电路进行初步诊断,再运用模糊变换及故障定位规则, 得到融合的故障诊断结果。模拟实验结果表明,所提方法大大提高了机械系统故障定位的准确率。2.4 启发式搜索(Heuristic Search. HS) 遗传算法(Genetic Algorithms ,GA)和模拟退火(Simulated Annealing ,SA)算法是近年来逐渐兴起的两种启发式搜索,通过随机产生新的解并保留其中较好的结果,并避免陷入局部最小,以求得全局最优解或近似最优解。GA是由数字串的集合表示优化问题的解,通过遗传算子,即选择、杂交和变异的操作对数字串寻优。SA 在已知解的邻近区产生新的解,并逐渐缩小邻近区域的大小,直到逼近全局的最优解。两种方法都可以用来求解任意目标函数和约束的最优化问题。 在交流伺服系统中采用遗传算法的模糊神经网络控制较之传统的PID 控制方式具有响应速度快、误差小、无震荡、伺服性能强等优点,仿真结果表明,将遗传算法融入模糊神经网络控制器来控制交流伺服系统,其系统的响应超调量明显减少,具有较好的抗干扰性、伺服性。3 人工智能在机械系统中的发展趋势 人工智能中的四种主要工具, 即ES、ANN、FST 和GA,虽然在机械领域有不同程度的应用,但各自都存在一些局限:ES 存在知识获取的“瓶颈”、知识难以维护、应用面窄、诊断能力弱等问题。ANN 在外推时误差较大、系统结构变化时ANN 的组成结构也要变化、难以实现基于结构化知识的逻辑推理、缺乏解释能力等。FST 存在可维护性问题。GA 在依据的信息发生畸变时,难以保证可靠性等。 目前,缺少一种普遍有效的方法应用于机械系统的各个领域。混合智能,即综合多种智能技术用以设计、控制、监测机械系统成为新的发展趋势。结合的方式主要有基于规则的专家系统与神经网络相结合,CBR 与基于规则系统和神经网络的结合,模糊逻辑、神经网络与专家系统的结合等。其中模糊逻辑、神经网络与专家系统结合的诊断模型是最具发展前景的,也是目前人工智能领域的研究热点之一。混合智能在机械系统的应用中有如下发展趋势:由基于规则的系统到混合模型的系统,由领域专家提供知识到机器学习、由非实时诊断到实时诊断、由单一推理控制到混合推理控制策略等。4 人工智能在机械系统中的应用实例 智能技术在机械领域已经有了许多成功的应用。在工程中,典型的专家系统有帮助工程师发现结构分析问题的分析策略的SACON 系统;帮助识别和排除机车故障的DELTA 系统;帮助操作人员检测和处理核反应堆事故的REACTOR 系统。 在故障诊断方面,1967 年在美国航天局(NASA)倡导下,由美国海军研究室(ONR)主持美国机械故障预防小组(MFPG),积极从事故障诊断技术研究和开发。目前各种类型的故障诊断和维修专家系统已用于美国F- 15 战斗机、B- 1B 轰炸机、海军舰艇、陆军军械装置等现役装备的故障诊断和维修中。在我国,华中理工大学研制了用于汽轮机组工况监测和故障诊断的智能系统DEST;哈尔滨工业大学和上海发电设备成套设计研究所联合研制了汽轮发电机组故障诊断专家系统MMMD- ;清华大学研制了用于锅炉设备故障诊断的专家系统等等。 在电路和数字电子设备方面,MIT 研制用于模拟电路操作并演绎出故障可能原因的EI 系统;美国海军人工智能中心开发了用于诊断电子设备故障的IN- ATE 系统;波音航空公司研制了诊断微波模拟接口MSI 的IMA 系统;意大利米兰工业大学研制用于汽车启动器电路故障诊断的系统。 2006 年初,上海交通大学机电控制研究所、上海市农业机械研究所成功研制了适用于我国数字农业特点的两种主要智能型农业机械:中、小型收割机智能测产系统及其配套软件;智能变量施肥、播种机及其配套软件。虽然相关的应用实例还有很多,但它们大都处于实验室或小范围试验状态,限于成本、技术等问题,不能得到普及应用,这将成为智能技术在机械领域应用的“瓶颈”。引用: http://teardown.eefocus.com/xuweitao/blog/08-01/141923_aa9c4.html