A. 数据可视化如何让大数据更加人性化

每天都有海量的数据出现,依靠传统的人工方式去呈现数据价值,可能一辈子都处理不完。我们需要新的软件和技术,去更深入的理解和利用大数据集合。最佳的方法是提高数据可视化的水平。康拓普数据洞察平台,专注于大数据可视化技术,致力于帮助客户挖掘和利用数据价值,指导客户如何利用数据可视化工具让大数据更加人性化。

纵观生活,大数据的应用十分普遍:淘宝运用大数据为客户推荐商品信息,网络用大数据帮助大家精准搜索,谷歌地图用大数据指引出行。不知不觉中,数据可视化已经遍布我们生活的每一个角落,毕竟用户更关心数据结果的展示而非大数据。

比如我们常用的智能手机,它既是一款数据采集工具,同时也是一个多媒体的数据可视化展示平台:比如我们看的新闻中有大量的数据图表;我们娱乐的影视剧和电子游戏,频繁出现的数据可视化元素,让作品更具科技感;在教育与科普方面,数据可视化的应用更广,因为大家已经对传统单调的讲述方式失去兴趣,喜欢更加直观、高效的信息呈现形式。

未来,随着智能手机、平板电脑和车载电脑等平台日渐普及且不断融合,新的交互手段将成为数据可视化的趋势。那么,我们如何更加快速、深入、全面的展示大数据背后的信息呢? 答案是我们需要更加人性化的数据可视化设计。

如何设计更加人性化的数据可视化效果?

其实,数据可视化早已存在,我们用的PPT、EXCEL中就可以将数据的各种属性和变量呈现出来。对于大数据,这远远不够。

近年来,大数据可视化发展迅速,随着数据可视化平台的拓展,应用领域的增加,表现形式的不断变化,以及增加了诸如实时动态效果、用户交互使用等,数据可视化像所有新兴概念一样边界不断扩大,不断有酷炫夺目的可视化案例出现。但是,数据可视化的图形设计,并不是越酷炫越好,而是要贴合用户需求。

大数据可视化应该更贴近用户的使用习惯和使用需求,就像交通指示牌一样,让车主准确到达目的就行,而无需复杂的图形。因此,在大数据可视化设计时,也需因地制宜:

首先,对于简单明了的大数据集合,可以用饼图、直方图、散点图、柱状图等最原始的统计图表,它们是数据可视化的最基础最常见的应用。

其次,遇到复杂或大规模异型数据集,比如商业分析、财务报表、人口状况分布、媒体效果反馈、用户行为数据等,就要先进行数据采集、数据分析、数据治理、数据管理、数据挖掘等一系列复杂数据处理,然后由设计师设计一种表现形式,是立体的、二维的、动态的、实时的,还是允许交互的?最后由数据工程师创建对应的可视化算法及技术实现手段。

这些复杂的制作步骤,目前的大数据可视化平台可以帮你实现。“康拓普大数据洞察平台”,内置大量丰富的可视化图表,满足客户不同场景的需求,是一款超级实用的大数据可视化工具。

康拓普数据洞察平台,为您定制更贴合需求的数据可视化

康拓普数据洞察平台,基于大数据和互联网时代设计,它是一款自助式的大数据可视化工具,为您提供丰富的图标效果展示,帮助您洞察大数据的潜力和价值。平台支持多终端( PC、平板、手机端)、跨平台(iOS、安卓、Windows)对数据进行可视化展现。

康拓普数据洞察平台,支持多个报表在页面上灵活布局,自由组合,一目了然,快速响应用户需求。还可以帮助非专业的人士通过图形化的界面轻松搭建专业水准的可视化应用,满足各行业在日常业务中的监控、调度、会展演示等多场景使用需求。

以上由物联传媒转载,如有侵权联系删除

B. 人人都在说大数据,那大数据概念是怎么产生的

概念产生:

“大数据”的名称来自于未来学家托夫勒所著的《第三次浪潮》 尽管“大数据”这个词直到最近才受到人们的高度关注,但早在1980年,著名未来学家托夫勒在其所著的《第三次浪潮》中就热情地将“大数据”称颂为“第三次浪潮的华彩乐章”。《自然》杂志在2008年9月推出了名为“大数据”的封面专栏。从2009年开始“大数据”才成为互联网技术行业中的热门词汇。

C. 大数据分析让个性化的客户体验不再遥远

大数据分析让个性化的客户体验不再遥远_数据分析师考试

顾客通过多种渠道制造大量数据,企业则热衷于利用这些信息来实现更为个性化的体验。

分析公司Gartner表示,高级分析会成为客户服务的关键,但是大数据分析的采用目前仅局限于不到一成的企业。 挑战在于企业还在努力适应结构化数据,疲于根据自身的客户关系管理(CRM)系统部署有效的分析框架,以及集成不同的内外部信息源。

然而,面对顾客通过数字技术参与而产生的快速变化的信息,企业需要及时作出反应。要想实时反应,使客户感受到个体价值,企业只能通过高级分析来实现。

大数据为实现基于顾客个性的交互提供了可能,通过理解他们的态度,并对其他一些因素(如实时位置)进行分析以帮助实现多渠道服务环境中的个性化。

考虑个体行为

Aphrodite Brinsmead是分析公司Ovum的客户关系高级分析师,她认为个性化和分析密不可分,并且在开发多渠道战略时,企业需要考虑顾客的个体特性和行为。

他们应当回顾目前的行为,全网不同渠道的使用和用户在不同渠道中的共同需求。在决定如何加入新渠道或连接新数据之前,了解趋势是必不可少的。然后企业应该关注如何为顾客节省时间和精力,提高一次接触解决率。他们应当努力在顾客转换渠道的时候保留环境,使用分析法,将相关数据推送给顾客和代理商。

英国三大零售商之一乐购(Tesco)使用了Oracle的一套技术,包括它的客户体验产品,使公司成为了多渠道零售商。

找到顾客参与的偏好实践和方式时个性化的关键,而数据分析就能够解锁这项技能并节省成本。Gartner表示,在各个渠道,包括网站,移动应用或客户参与中心交互,都要有环境相关的知识。

根据Gartner,向雇员提供环境知识能够减少供应商提供回答的时间,这样能够提高能力和满意度。它也符合经济利益,因为每一个准确的知识管理规则到位,公司就能减少25%甚至更多的客户支持费用。

要注意将内容与客户数据连接的方式,根据客户偏好,客户服务才能收到个性化信息。通过一般顾客历程的信息和支持性问题,企业就能预测客户的需求。

将客户作为个体来了解,让他们感受极致流畅的历程,是提供良好客户体验的关键,Jamie Turner说道,他是Postcode Anywhere的地址管理首席技术官。他认为个性化客户服务对于在数字经济中的生存是必不可少的。

“服务就像保险一样——当你需要它的时候,就已经十万火急了。它不应当耗人心力,也不应复杂,而应该是一个无摩擦、无痛的过程。那些了解到这一点的企业就能够长期存活。网上的忠诚度很低,所以你需要努力奋斗才能保住消费者。太多的企业现在还在专注于开拓新顾客,而忽视了已有客户的情绪。”Turner说道。

在数据分析上的投资

然而,没有分析上的投资,要实现有效的客户服务或体验个性化也不简单。这是大家都想要的,但也很难做好。我们都喜欢那种知道自己习惯的酒吧,那个无需动嘴就知道你想要什么的角落商店。这就是个性化,但这很难实现规模化。

根据Turner的说法,好的分析能够帮助企业变得更为主动,而无需根据顾客的期待做出反应。这对于我们来说非常重要,我们构建了一套技术来帮助我们理解和预测我们客户的‘感受’。这样我们就可能占得先机,走到顾客前面去。

他认为要开发能够知悉客户个体喜好与厌恶的更加智能的服务,大数据的角色非常重要:“大数据绝对是关键。它对于不同的人来说有着不同的意义,但是对于我来说大数据更像一种方法。它实质上就是要收集尽量多的数据,然后用机器学习这样的技术来从噪音中筛选出重要的部分。而挑战之一就在于实现实时反应,或者实时采取理想化的行动。”

他表示依赖通过大批量处理数据的出的洞察,这种一产生就已经过了有效期的“洞察”,早已不能满足需求。

“人何以提供最好的服务?都是因为他们在不知不觉中处理了从行为中得到的大量暗示,并作出如何反应的即时判断。将这一道理应用到技术上,能够帮助我们提供真正自然和热心支持的个性化服务,同时还能满足顾客的需求。”Turner说道

尊重客户的隐私

但是,数据越大,责任就越大。Ovum的Brinsmead认为最好的实践意味着,分析但不入侵。 “要谨慎使用客户数据推送产品和促销,否则就会容易失去客户的信任。”她说。

Brinsmead认为,企业使用数据要明智,并且不断创新,通过将全网站、社交渠道,社区型信息,移动应用和自动聊天等整合信息。客户不想离开移动应用去社区或者聊天室取得技术帮助。

理解客户在历程的不同阶段选择的交互方式也是很重要的,这很简单就能实现。需要在线支持来回答的问题都会是包含私人信息,并且复杂或紧急的需求。企业应当知道什么时候交互需要在线服务,并为客户实现迅速连接。企业应当提前将顾客的网页历史或之前的问题这种环境提供给在线服务人员。

Brian Manusama是Gartner的一个调研主管,他表示使用大数据实现客户服务的企业能够为提供丰富、分析性、个性化的客户服务,从而提高客户满意率。因此,这些企业通过可预测分析就能实现收益的增长,有利于企业的发展。在问题升级前避免问题,是减少支持费用和留住客户的最明智方式。

“通过分析,企业能够更好的理解客户遇到的服务问题,做出行动来避免问题的发生,并在客户向客户服务求助之前解决问题。”Manusama表示。

以上是小编为大家分享的关于大数据分析让个性化的客户体验不再遥远的相关内容,更多信息可以关注环球青藤分享更多干货

D. 如何理解大数据和个性化定制之间关系

科技数据中心解决方案是以组织价值链分析模型为理论指导,结合组织战略规划和面向对象的方法论,对组织信息化战略进行规划重造立足数据,以数据为基础建立组织信息化标准,提供面向数据采集、处理、挖掘、分析、服务为组织提供一整套的基础解决方案。未至数据中心解决方案采用了当前先进的大数据技术,基于Hadoop架构,利用HDFS、Hive、Impala等大数据技术架构组件和公司自有ETL工具等中间件产品,建立了组织内部高性能、高效率的信息资源大数据服务平台,实现组织内数亿条以上数据的秒级实时查询、更新、调用、分析等信息资源服务。未至数据中心解决方案将,为公安、教育、旅游、住建等各行业业务数据中心、城市公共基础数据库平台、行业部门信息资源基础数据库建设和数据资源规划、管理等业务提供了一体化的解决方案。

E. 大数据的含义包括什么哪几个方面

1、大数据可以用来察觉商业趋势、判定研究质量、避免疾病扩散、打击犯罪或测定实时交通路况等;这样的用途正是大型数据集盛行的原因。

2、大数据的应用示例包括大科学、RFID、感测设备网络、天文学、大气学、基因组学、生物学、大社会数据分析、互联网文件处理、制作互联网搜索引擎索引、通信记录明细、军事侦查、社交网络、通勤时间预测、医疗记录、照片图像和视频封存、大规模的电子商务等。

3、大数据也称为巨量数据、海量数据、大资料,指的是所涉及的数据量规模巨大到无法通过人工,在合理时间内达到截取、管理、处理、并整理成为人类所能解读的信息。

4、大数据的特点是数据量大、数据种类多、 要求实时性强、数据所蕴藏的价值大。在各行各业均存在大数据,但是众多的信息和咨询是纷繁复杂的,我们需要搜索、处理、分析、归纳、总结其深层次的规律。

F. 什么是大数据,通俗的讲

有人说大数据技术是第四次技术革命,这个说法其实不为过。
很多人只是听过大数据这个词或者是简单知道它是什么,那么它是什么呢,在这里就通俗点来说一下个人对大数据的理解。
大数据,很明显从字面上理解就是大量的数据,海量的数据。大,意思就是数据的量级很大,不上TB都不好意思说是大数据。数据,狭义上理解就是12345那么些数据,毕竟计算机底层是二进制来存的,那么在大数据领域,数据就不仅仅包括数字这些,它可以是所有格式的东西,比如日志,音频视频,文件等等。
所以,大数据从字面上理解就是海量的数据,技术上它包括这些海量数据的采集,过滤,清洗,存储,处理,查看等等部分,每一个部分包括一些大数据的相关技术框架来支持。
举个例子,淘宝双十一的总交易额的显示,后面就是大数据技术的支持,全国那么多淘宝用户的交易记录汇聚到一起,数据量很大,而且要做到实时的展现,就需要强有力的大数据技术来处理了。
数据量一大,那么得找地方来存,一个服务器硬盘可以挂多少,肯定满足不了这么大的数据量存储啊,所以,分布式的存储系统应运而生,那就是HDFS分布式文件系统。简单的说,就是把这么大的数据分开存在甚至几百甚至几千台服务器上,那么管理他们的系统就是HDFS文件系统,也是大数据技术的最基本的组件。
有地方存了,需要一些分布式的数据库来管理查询啊,那就有了Hbase等,还需要一些组件来计算分析这些数据啊,maprece是最基本的计算框架,其他的计算框架Spark和Storm可以完成实时的处理,其中HDFS和MapRece组成了Hadoop1.
总之,一切都是数据。我们的历史,是不是都是大量的数据保存下来的,现在我们也是大数据的生活,天天有没有接到骚扰电话还知道你姓什么,你查话费什么的从几亿人的数据中查到你的信息,大数据生活。未来,大数据将更深刻的渗透到生活中。

G. 大数据要注重以人为本

大数据要注重以人为本
大数据为什么会这么火?上世纪80年代,未来学家托夫勒在那本闻名世界的《第三次浪潮》一书中就预言过:“如果说IBM的主机拉开了信息化革命的大幕,那么大数据才是第三次浪潮的华彩乐章。”确实,自从计算机被发明并投入应用以来,作为信息化的主要产物——数据就呈现出了前所未有的快速增长,尤其是互联网逐步的普及,更是加速了数据产生的规模。
“大数据”无疑是当下的一个时髦词汇。如果使用Google搜索“Big data”,你可以得到636,000,000 条结果。目前,大数据在全球所形成的市场规模超过了50亿美元,预计到2017年将增长到500亿美元以上。
在大数据如火如荼增长的背后,是人们参与数据制造的数量的增加。目前,全球的互联网网民约在25亿左右,中国的网民总数在6亿左右,按照这种发展趋势,全球人口一半成为网民可能在2016年左右发生。正是有了这么多“个体”或“小我”的聚集,才带来了大数据的时代。而开发应用大数据,也一定要重视“小我”,让大数据开发出的结果更加人性化、更具合理性。
基于大数据开发出的精准营销等一系列新的商业模式,正在推动营销理念和商业模式的变革。但即便这种已经具备了“个性化”的模式,还是缺少“人情味”。美国一家连锁超市曾经根据某位消费者的购物数据预测出她已经怀孕,就将婴儿尿片和童车的优惠券直接派发给了她,但却遭到了其父亲的强烈抗议。原因是这个女孩还未满18岁,而且她和家人都还没有意识到自己已经怀孕的事实。虽然这被看作是大数据开发应用的一个典型案例,但实际上却暴露了这种精准营销背后存在的社会伦理缺陷。
现在,很多网站根据用户使用网络进行商品搜索或者网上购物的记录,直接在用户再次访问网站时加载相关广告等作法,往往会引起用户的反感。这种只顾商业利益,而不考虑用户感受的营销,实际上变相地剥夺了消费者的权利,这些作法本身也削减了消费者的购物欲望,起到适得其反的作用。
大数据开发目前除了在工业领域、商业领域应用外,也在向社会管理领域大步迈进着。在《爆发》这本讲述大数据时代的代表性着作中,作者巴拉巴西有这样的判断:人类行为中有93%是可以预测的。正是这个判断,增添了一些人在社会管理领域应用大数据的激情。但要看到,这个判断的前提是要对全球每个个体的24小时、每分每秒,甚至一生的行为进行数据采集。这显然在短时间内是无法实现的。
即便是我们的技术能力达到了那个水平,但是对一个有血有肉的人的行为进行预测,对由千百万个活生生的个体所构成的社会进行精确性管理,除了用好数据外,更要注重遵循人和社会自身的特点和规律,这样才能使大数据时代的社会管理更具合理性。如果完全把社会管理模式建立在数据的分析和应用上,这样的管理方式很可能会给人类社会的发展带来巨大的风险。