A. 什么是中医远程诊疗系统

通过热能测试笔,得出身体穴位能量,再通过信号传送给大数据后台分析得出结果,再反馈给你,能提前知道身体的变化,预测各种病因。

B. 俏郎中中医人工智能脉诊仪谁知道

这产品好像是通复过临床大制数据模拟的中医把脉,我对中医了解不多,不过我爸妈比较信中医,他们一直在用,说检测结果挺准的,还会给出相应的调理建议。反正我感觉在我爸妈的调理下我身体确实感觉比以前强健不少。这些给你做个参考建议吧。

C. 有那种可以中医诊疗的智能魔镜吗

现在还没有,估计10年以后就有了。

D. 国家筹建三大健康医疗大数据集团,各有哪些特色

从此前发布的公开信息可见,三大健康医疗大数据集团均以国有资本为主体,三大集团由国家卫生和计划生育委员会统一牵头组织,由国家健康医疗大数据安全管理委员会(大数据办)统一监管。
4月份,中国健康医疗大数据产业发展集团公司由中国电子信息产业集团公司、国家开发投资公司、中国联合网络通信有限公司、中国国有企业结构调整基金股份有限公司宣布正式筹建;随后,中国健康医疗大数据科技发展集团公司由中国科学院控股有限公司、中国银行、工商银行、中国电信、中国信达、广州城投等公司宣布筹建,公司将于7月底之前完成筹备,与相关试点城市政府签约,并进驻项目建设现场。
6月20日,中国健康医疗大数据股份有限公司宣布筹建,由中国移动通信集团公司与浪潮集团有限公司作为发起方,携手国新控股、国家开发银行、工商银行、农业银行、中国银行、建设银行、交通银行等多家企业共同组建。
2016年6月,国务院办公厅印发了《关于促进和规范健康医疗大数据应用发展的指导意见》(以下简称《意见》),将健康医疗大数据应用发展纳入国家大数据战略布局,并从夯实应用基础、全面深化应用、规范和推动“互联网+健康医疗”服务、加强保障体系建设等四个方面部署了14项重点任务和重大工程。三大集团公司的筹备成立将有助于推动该《意见》落到实处。
金小桃告诉记者,“组建以国有资本为主体的三个健康医疗大数据集团,目标非常明确:

一是通过健康医疗大数据应用促进优质医疗资源下沉到基层群众,努力提高人民群众获得感;

二是通过健康医疗大数据支持三医联动、分级诊疗、异地结算和远程服务等,为深化医改注入新动力;

三是通过健康医疗大数据应用发展,创新健康服务新业态,发展健康科技产品,推进覆盖一二三产业的全健康产业链的发展,促进数字经济为国民经济增添新动能。”
金小桃表示,健康医疗大数据是涉及到国家战略安全、群众生命安全以及隐私保护安全的重要战略性资源,以国有资本为主体建设三大健康医疗大数据集团公司,“这是承担国家使命、落实国家战略的重要举措”。在未来的健康医疗大数据应用发展过程中,欢迎各方力量加入国家重点项目建设、健康产业和数字经济发展队伍,实现共建共享共赢。

三大集团目标任务一致,发展各具特色

三大集团公司的目标任务就是承担国家健康医疗大数据中心、区域中心和应用发展中心的建设和健康医疗科技文化产业园等经济发展运营工作。金小桃强调,三大集团所承担的建设任务,总体目标是一致的,但是有其区域特点,有其发展特色,形成集群优势,为国家经济发展注入新的活力,最终建成国民经济重要支柱产业。“特别是在产业发展上,各集团公司将根据各地不同的实际情况,形成不同的发展模式、产业形态及应用方向。”
据金小桃介绍,根据国务院要求,总体规划是建设一个国家数据中心,加七个区域中心,并结合各地实际情况,建设若干个应用和发展中心,也就是“1+7+X”的健康医疗大数据应用发展的总体规划。
一个国家中心将容纳全体公民健康医疗大数据,形成以“全息数字人”为愿景的健康科技产业生态圈,涵盖每个公民所有涉及到生产、生活、生命的全过程全周期的生理心理社会环境等数据,预计数据采集和应用的规模将达到1000 ZB以上。
七个区域中心,将按照国家总体规划、按照地域布局进行建设。“现在我们已经在华南和华东进行了国家第一批试点,也就是在福建省和江苏省两个省分别建两个区域中心。其他的区域中心也很快将通过调研、专家论证和国家批复以后进入正式建设阶段。”
X个应用发展中心主要指国家中心和七个区域中心建设带动下,各省区市在依法依规负责收集汇聚上报国家的健康医疗大数据基础上,开展应用创新及产业园建设。
“通过这样的总体规划,我们在推动国家健康医疗大数据中心建设的过程中,既避免了过去数据分散、互不联通、共享困难形成的数据孤岛和数据烟囱等问题,同时也为既有区域集中应用和国家一体化大数据中心的建设提出了方向和要求。有利于健康医疗大数据采集、存储、应用过程中的互联互通和共建共享,有利于开发应用创新和产业集群发展。”金小桃称。

E. 国内医疗大数据公司有哪些最好结合案例

大数据在医疗行业的应用可在以下几个方面发挥积极作用:

(1)服务居民。居民健康指导服务系统,提供精准医疗、个性化健康保健指导,使居民能在医院、社区及线上的服务保持连续性。例如,提供心血管、癌症、高血压、糖尿病等慢性病干预、管理、健康预警及健康宣教(保健方案订阅、推送);同时减少患者住院时间,减少急诊量,提高家庭护理比例和门诊医生预约量。

5、疾病模式的分析

通过分析疾病的模式和趋势,可以帮助医疗产品企业制定战略性的研发投资决策,帮助其优化研发重点,优化配备资源。

新的商业模式

大数据分析可以给医疗服务行业带来新的商业模式。

汇总患者的临床记录和医疗保险数据集

汇总患者的临床记录和医疗保险数据集,并进行高级分析,将提高医疗支付方、医疗服务提供方和医药企业的决策能力。比如,对医药企业来说,他们不仅可 以生产出具有更佳疗效的药品,而且能保证药品适销对路。临床记录和医疗保险数据集的市场刚刚开始发展,扩张的速度将取决于医疗保健行业完成EMR和循证医 学发展的速度。

公众健康

大数据的使用可以改善公众健康监控。公共卫生部门可以通过覆盖全国的患者电子病历数据库,快速检测传染病,进行全面的疫情监测,并通过集成疾病监测 和响应程序,快速进行响应。这将带来很多好处,包括医疗索赔支出减少、传染病感染率降低,卫生部门可以更快地检测出新的传染病和疫情。通过提供准确和及时 的公众健康咨询,将会大幅提高公众健康风险意识,同时也将降低传染病感染风险。所有的这些都将帮助人们创造更好的生活。

F. 大数据在医疗行业的应用有哪些

大数据专业属于交叉学科:以统计学、数学、计算机为三大支撑性学科;生物、医学、环境科学、经济学、社会学、管理学为应用拓展性学科。所以大数据在众多行业都有应用,下面说说其在医疗领域的应用。
随着互联网规模不断的扩大,大数据正在改变着这个时代的绝大一部分的行业或者企业,医疗行业也不例外,医疗健康正在成为人们关注的重点问题,以智能化、数字化为特征的医疗信息化正在蓬勃兴起,医疗行业的数据类型也在向海量、复杂、多样的类型方式转变。
1.就医数据进行电子化管理
对电子医疗记录的收集,包括个人病史、家族病史、过敏症以及所有医疗检测结果等。在信息系统中进行分享,每一个医生都能够在系统中添加或变更记录,而无需再通过耗时的纸质工作来完成。这些记录同时也能帮助病人掌握自己的用药情况,同时也是医学研究的重要数据参考。
2.健康预测
通过智能手表等可穿戴设备的数据,建立健康预测模型,通过这些可穿戴设备持续不断地收集健康数据并存储在云端,实时汇报病人的健康状况。应用于数百万人及其各种疾病的预测和分析,并且在未来的临床试验将不再局限于小样本,而是包括所有人。
3.医学影像以及临床诊断
通过让大数据机器人来识别记住各类海量的医学影像,例如X射线、核磁共振成像、超声波……等各种的图像。对大量病历进行深度挖掘与学习,训练其对影片的诊断,最终实现辅助医生进行临床决策,规范诊疗路径,提高医生的工作效率。
4.药品研发
利用大数据进行数据建模并进行分析,预测药物的临床结果,可以为临床阶段的实验结果提供参考,节省临床阶段的时间并优化临床实验结果。制药公司也可以通过数据建模进行分析,从而生产出治疗成功率更高的药品并极大地缩短药品从研发到投入市场的时间。

G. 有没有适合药房使用的智能中医检测设备,求推荐

富勒智能健康管理系统不错的,它是根据先进的生物电学原理,以中医经络学为理论基础,运用现代医学大数据、人工智能等最先进技术手段,根据检测人体特定穴位生物电的结果,评估人体的健康状况并提供个性化的干预方案,整个过程可由人工智能自动完成,三分钟即可全面准确检测人体健康状况,因此被称为“3分钟智能医生”。

H. 大数据医疗具体是指什么

医疗大数据是个很宽泛的概念,他有很多详细的分类,包括:电子病历数据,这是患者就医过程中所产生的数据,包括患者基本信息、疾病主诉、检验数据、影像数据、诊断数据、治疗数据等,这类数据一般产生及存储在医疗机构的电子病历中,这也是医疗数据最主要的产生地。电子化的医疗病历方便了病历的存储和传输,但是并未达到进行数据分析的要求。大约80%的医疗数据是自由文本构成的非结构化数据,其中不仅包括大段的文字描述,也包括包含非统一文字的表格字段。通过医学自然语言理解技术,将非结构化医疗数据转化为适合计算机分析的结构化形式是医疗大数据分析的基础。电子病历中所采集的数据是数据量最多、最有价值的医疗数据。通过和临床信息系统的整合,内容涵盖了医院内的方方面面的临床数据集。在电子病历的互通互联上,出于各自的利益性(限制病人转诊),各大电子病历企业也不愿意使数据互通互联。根据美国政府相关报告显示,其电子病历共享比例也仅为30%左右。
检验数据
医院检验机构产生了大量患者的诊断、检测数据,也有大量存在的第三方医学检验中心也在产生数据。检验数据是医疗临床子系统中的一个细分小类,但是可以通过检验数据直接患者的疾病发展和变化。目前临床检验设备得到迅速发展,通过LIS 系统对检验数据进行收集,可以对疾病的早发现早诊断和正确诊断做出贡献。
影像数据
随着数据库技术和计算机通讯技术的发展,数字化影像传输和电子胶片应运而生。医疗影像数据是通过影像成像设备和影像信息化系统产生的,医院影像科和第三方独立影像中心存储了大量的数字化影像数据。医学影像大数据,是由DR、CT、MR 等医学影像设备产生所产生并存储在PACS 系统内的大规模、高增速、多结构、高价值和真实准确的影像数据集合。与检验信息系统(LIS)大数据和电子病历(EMR)等同属于医疗大数据的核心范畴。医学影像数据量非常庞大,影像数据增速快,标准化程度高。影像数据和临床其他数据比较起来,它的标准化、格式化、统一性是最好的,价值开发也最早。
费用数据
医院门诊费用、住院费用、单病种费用、医保费用、检查和化验收入、卫生材料收入、诊疗费用、管理费用率、资产负债率等和经济相关的数据。除了医疗服务的收入费用之外,还包含医院所提供医疗服务的成本数据,包含药品、器械、卫生人员工资等成本数据。在DRGs 按疾病诊断相关组付费模式中,需要详细的成本数据核算。通过大样本量的测算,建立病种标准成本,加强病种成本核算和精细化成本管理。
基因测序数据
基因检测技术通过基因组信息以及相关数据系统,预测罹患多种疾病的可能性。基因测序会产大量的个人遗传基因数据,一次全面的基因测序,产生的个人数据则达到300GB。一家基因测序企业每月产生的数据量可以达到数百TB 甚至1PB。
智能穿戴数据
各种智能可穿戴设备的出现,使得血压、心率、体重、体脂、血糖、心电图等健康体征数据的监测都变成可能,患者的单一体征健康数据以及运动数据快速上传到云端,而且数据的采集频率和分析速度大大提升。除了生命体征之外,还有其他智能设备收集的健康行为数据,比如每天的卡路里摄入量、喝水量、步行数、运动时间、睡眠时间等等。智能穿戴设备虽然在这两年遇冷,用户很难形成粘性,但是并不意味着智能穿戴设备所产生的数据没有意义。提供健康数据和服务,可能是智能穿戴厂商未来的转型之路。健康大数据的收集必须依靠硬件载体,智能穿戴设备还将会遇到自己的第二春。
体检数据
体检数据是体检机构所产生的健康人群的身高、体重、检验和影像等数据。这部分数据来自医院或者第三体检机构,大部分是健康人群的体征数据。随着亚健康人群、慢病患者的增加,越来越多的体检者除了想从体检报告中了解自己的健康状况,还想从体检结果中获得精准的健康风险评估,以及如何进行健康、慢病管理。
移动问诊数据
通过移动设备端或者PC 端连接到互联网医疗机构,产生的轻问诊数据和行为数据。曾经通过互联网问诊企业春雨医生的数据,分析各地医生互联网问诊的活跃度、细分疾病种的问诊行为。通过这些数据的分析,对行业发展、互联网问诊企业的决策有非常重要的帮助。