① 哪些技术属于大数据的关键技术

大数据技术,就是从各种类型的数据中快速获得有价值信息的技术。大数据领域已经版涌现出了权大量新的技术,它们成为大数据采集、存储、处理和呈现的有力武器。
智能职涯(bigdata-job)总结了大数据处理关键技术一般包括:大数据采集、大数据预处理、大数据存储及管理、大数据分析及挖掘、大数据展现和应用(大数据检索、大数据可视化、大数据应用、大数据安全等)。

② 大数据技术有哪些

大数据技术,就是从各种类型的数据中快速获得有价值信息的技术。大数据领域已经涌现出了大量新的技术,它们成为大数据采集、存储、处理和呈现的有力武器。

大数据处理关键技术一般包括:大数据采集、大数据预处理、大数据存储及管理、大数据分析及挖掘、大数据展现和应用(大数据检索、大数据可视化、大数据应用、大数据安全等)。

六、大数据展现与应用技术

大数据技术能够将隐藏于海量数据中的信息和知识挖掘出来,为人类的社会经济活动提供依据,从而提高各个领域的运行效率,大大提高整个社会经济的集约化程度。在我国,大数据将重点应用于以下三大领域:商业智能、政府决策、公共服务。例如:商业智能技术,政府决策技术,电信数据信息处理与挖掘技术,电网数据信息处理与挖掘技术,气象信息分析技术,环境监测技术,警务云应用系统(道路监控、视频监控、网络监控、智能交通、反电信诈骗、指挥调度等公安信息系统),大规模基因序列分析比对技术,Web信息挖掘技术,多媒体数据并行化处理技术,影视制作渲染技术,其他各种行业的云计算和海量数据处理应用技术等。

③ 主流的大数据分析框架有哪些

1、Hadoop
Hadoop 采用 Map Rece 分布式计算框架,根据 GFS开发了 HDFS 分布式文件系统,根据 Big Table 开发了 HBase数据存储系统。Hadoop 的开源特性使其成为分布式计算系统的事实上的国际标准。Yahoo,Facebook,Amazon 以及国内的网络,阿里巴巴等众多互联网公司都以 Hadoop 为基础搭建自己的分布。

2、Spark

Spark 是在 Hadoop 的基础上进行了一些架构上的改良。Spark 与Hadoop 最大的不同点在于,Hadoop 使用硬盘来存储数据,而Spark 使用内存来存储数据,因此 Spark 可以提供超过 Ha?doop 100 倍的运算速度。由于内存断电后会丢失数据,Spark不能用于处理需要长期保存的数据。

3、 Storm

Storm 是 Twitter 主推的分布式计算系统。它在Hadoop的基础上提供了实时运算的特性,可以实时的处理大数据流。不同于Hadoop和Spark,Storm不进行数据的收集和存储工作,它直接通过网络实时的接受数据并且实时的处理数据,然后直接通过网络实时的传回结果。

4、Samza

Samza 是由 Linked In 开源的一项技术,是一个分布式流处理框架,专用于实时数据的处理,非常像Twitter的流处理系统Storm。不同的是Sam?za 基于 Hadoop,而且使用了 Linked In 自家的 Kafka 分布式消息系统。

Samza 非常适用于实时流数据处理的业务,如数据跟踪、日志服务、实时服务等应用,它能够帮助开发者进行高速消息处理,同时还具有良好的容错能力。

④ 想转行到大数据开发需要学习哪些技术

如果要学习大数据抄,不管你是零基础,还是有一定的基础,都是要懂至少一种计算机编程语言,因为大数据的开发离不开编程语言,不仅要懂,还要精通!但这门编程语言不一定是java

比如说,如果你主攻Hadoop开发方向,是一定要学习java的,因为Hadoop是由java来开发的。

如果你想要主攻spark方向,是要学习Scala语言的,每个方向要求的编程语言是不同的。

如果你是想要走数据分析方向,那你就要从python编程语言下手,这个也是看自己未来的需求的。

大数据是需要一定的编程基础的,但具体学习哪一门编程,自己可以选择的。其实只要学会了一门编程语言,其他编程语言也是不在话下的。

⑤ 华为大数据解决方案是什么

现在有好多公司在做大数据,不仅仅只有华为。比如北京开运联合信息技术股份有限公司(股票代码:13661204147)大数据解决方案是要根据您所需要的行业,来定制的。我给您介绍几个大数据解决方案。

医疗大数据解决方案:

功能列表:

(1)医疗药方分析与改进。通过对历史药方的分析与挖掘,为医生改进医药配方,提高治疗效果提供参考;

(2)重大疾病饮食推荐系统。对于重大疾病,一般需要调节饮食辅助治疗,根据病人的疾病类型和治疗阶段等多种数据,为病人推荐更合适的饮食建议;

(3)药品供求定向推送系统。药品供应对医院至关重要,而药品供应商也渴望得到医疗所需药品的数量和药品类型,可以定向地将药品需求预测信息推给药品供应商,使药品供应商有针对性地推销自己的药品;

(4)定向推荐护工服务。根据病人的疾病治病情况,定向为病人(或病人家属)推送专业的护工服务,即方便了病人,也为护工们找到好的客户提供了帮助。

汽车大数据解决方案:

功能列表:

(1)根据司机驾驶车辆习惯数据,为汽车生产企业改进汽车舒适度提供咨询;

(2)根据车辆部件运行数据,为汽车生产企业改进汽车部件质量提供咨询;

(3)抓取互联网数据,分析汽车关注热度,为汽车企业改进营销售策略提供咨询。

⑥ 什么是大数据技术

网络名词 涂子沛著的图书
巨量资料(big data),或称大数据、海量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。 大数据的4V特点:Volume、Velocity、Variety、Veracity。“大数据”是由数量巨大、结构复杂、类型众多数据构成的数据集合,是基于云计算的数据处理与应用模式,通过数据的整合共享,交叉复用,形成的智力资源和知识服务能力。

⑦ 如何利用大数据Hadoop等技术设计12306的网站架构

1. 大数据分析大分类
Hadoop平台对业务的针对性较强,为了让你明确它是否符合你的业务,现粗略地从几个角度将大数据分析的业务需求分类,针对不同的具体需求,应采用不同的数据分析架构。
按照数据分析的实时性,分为实时数据分析和离线数据分析两种。
实时数据分析一般用于金融、移动和互联网B2C等产品,往往要求在数秒内返回上亿行数据的分析,从而达到不影响用户体验的目的。要满足这样的需求,可以采用精心设计的传统关系型数据库组成并行处理集群,或者采用一些内存计算平台,或者采用HDD的架构,这些无疑都需要比较高的软硬件成本。目前比较新的海量数据实时分析工具有EMC的Greenplum、SAP的HANA等。
对于大多数反馈时间要求不是那么严苛的应用,比如离线统计分析、机器学习、搜索引擎的反向索引计算、推荐引擎的计算等,应采用离线分析的方式,通过数据采集工具将日志数据导入专用的分析平台。但面对海量数据,传统的ETL工具往往彻底失效,主要原因是数据格式转换的开销太大,在性能上无法满足海量数据的采集需求。互联网企业的海量数据采集工具,有Facebook开源的Scribe、LinkedIn开源的Kafka、淘宝开源的Timetunnel、Hadoop的Chukwa等,均可以满足每秒数百MB的日志数据采集和传输需求,并将这些数据上载到Hadoop中央系统上。
按照大数据的数据量,分为内存级别、BI级别、海量级别三种。
这里的内存级别指的是数据量不超过集群的内存最大值。不要小看今天内存的容量,Facebook缓存在内存的Memcached中的数据高达320TB,而目前的PC服务器,内存也可以超过百GB。因此可以采用一些内存数据库,将热点数据常驻内存之中,从而取得非常快速的分析能力,非常适合实时分析业务。图1是一种实际可行的MongoDB分析架构。

⑧ 如何架构大数据系统 hadoop

大数据数量庞大,格式多样化。大量数据由家庭、制造工厂和办公场所的各种设备、互联网事务交易、社交网络的活动、自动化传感器、移动设备以及科研仪器等生成。它的爆炸式增长已超出了传统IT基础架构的处理能力,给企业和社会带来严峻的数据管理问题。因此必须开发新的数据架构,围绕“数据收集、数据管理、数据分析、知识形成、智慧行动”的全过程,开发使用这些数据,释放出更多数据的隐藏价值。

一、大数据建设思路

1)数据的获得

四、总结

基于分布式技术构建的大数据平台能够有效降低数据存储成本,提升数据分析处理效率,并具备海量数据、高并发场景的支撑能力,可大幅缩短数据查询响应时间,满足企业各上层应用的数据需求。

⑨ 请问大数据的关键技术有哪些

1.分布式存储系统(HDFS)。2.MapRece分布式计算框架。3.YARN资源管理平台。4.Sqoop数据迁移工具。5.Mahout数据挖掘算法库。6.HBase分布专式属数据库。7.Zookeeper分布式协调服务。8.Hive基于Hadoop的数据仓库。9.Flume日志收集工具。

⑩ 大数据架构究竟用哪种框架更为合适

大数据数量庞大,格式多样化。大量数据由家庭、制造工厂和办公场所的各种设备、互联网事务交易、社交网络的活动、自动化传感器、移动设备以及科研仪器等生成。它的爆炸式增长已超出了传统IT基础架构的处理能力,给企业和社会带来严峻的数据管理问题。因此必须开发新的数据架构,围绕“数据收集、数据管理、数据分析、知识形成、智慧行动”的全过程,开发使用这些数据,释放出更多数据的隐藏价值。

一、大数据建设思路

1)数据的获得

通过大数据的引入和部署,可以达到如下效果:

1)数据整合

·统一数据模型:承载企业数据模型,促进企业各域数据逻辑模型的统一;

·统一数据标准:统一建立标准的数据编码目录,实现企业数据的标准化与统一存储;

·统一数据视图:实现统一数据视图,使企业在客户、产品和资源等视角获取到一致的信息。

2)数据质量管控

·数据质量校验:根据规则对所存储的数据进行一致性、完整性和准确性的校验,保证数据的一致性、完整性和准确性;

·数据质量管控:通过建立企业数据的质量标准、数据管控的组织、数据管控的流程,对数据质量进行统一管控,以达到数据质量逐步完善。

3)数据共享

·消除网状接口,建立大数据共享中心,为各业务系统提供共享数据,降低接口复杂度,提高系统间接口效率与质量;

·以实时或准实时的方式将整合或计算好的数据向外系统提供。

4)数据应用

·查询应用:平台实现条件不固定、不可预见、格式灵活的按需查询功能;

·固定报表应用:视统计维度和指标固定的分析结果的展示,可根据业务系统的需求,分析产生各种业务报表数据等;

·动态分析应用:按关心的维度和指标对数据进行主题性的分析,动态分析应用中维度和指标不固定。

四、总结

基于分布式技术构建的大数据平台能够有效降低数据存储成本,提升数据分析处理效率,并具备海量数据、高并发场景的支撑能力,可大幅缩短数据查询响应时间,满足企业各上层应用的数据需求。