贵州伯克利大数据
Ⅰ 什么是大数据的主流框架
大数据的框架肯定指的是分布式存储和分布式计算的框架
过去这个框架基本上被hadoop垄断,现在就不一定了,现在很多数据库已经开发出分布式版本,性能也比简单的hadoop要强劲,比如阿里的oceanbase,tidb
分步式计算框架目前也有spark,而且超越my proce,专门用来做大规模算的框架,也有一些,比如神经网络,Tensorflow就自带分布式功能
Ⅱ 贵州伯克利教育有限公司怎么样
简介:贵州伯克利教育有限公司是贵州伯克利大数据创新研究中心下专注于教育事业的分支。作为与伯克利大学合作桥梁发挥着巨大作用。引进国外先进教育体系,链接世界顶尖院校资源,探究中外教育事业的结合,是一家高端家庭子女教育规划服务商。
法定代表人:顾天安
成立时间:2017-12-06
注册资本:50万人民币
工商注册号:520198000040601
企业类型:有限责任公司(非自然人投资或控股的法人独资)
公司地址:贵州省贵阳市贵阳国家高新技术产业开发区金阳科技产业园标准厂房辅助用房B406室
Ⅲ 在美国伯克利学大数据研究生回国找工资年薪多少
大数据研究抄生留学回来还是比较袭吃香的,因为随着信息技术和互联网的爆发式发展,人工智能、物联网、云计算等新兴技术与大数据紧密结合,整个大数据行业仍将持续高速发展,未来大数据将成为全行业的基石,发展前景不可估量。但不管是从时间还是经验看,目前国内培养大数据人才的院校都尚处于起步阶段,学校教育与大数据市场需求脱节严重,如果有美国留学背景的大数据人才,年薪不会低于30万人民币。工作5年后平均年薪60万
Ⅳ 6何为伯克利数据分析栈BDASMP3
所谓Spark是起源于美国加州大学伯克利分校AMPLab的大数据计算平台,在2011年开源,目前是Apache软件基金会的顶级项目。随着Spark在大数据计算领域的暂露头角,越来越多的企业开始关注和使用。2014年11月,Spark在Daytona Gray Sort 100TB Benchmark竞赛中打破了由Hadoop MapRece保持的排序记录。Spark利用1/10的节点数,把100TB数据的排序时间从72分钟提高到了23分钟。
Spark在架构上包括内核部分和4个官方子模块
Spark SQL
Spark Streaming
机器学习库MLlib
图计算库GraphX
由Spark在伯克利的数据分析软件栈BDAS(Berkeley Data Analytics Stack)中的位置可见,Spark专注于数据的计算,而数据的存储在生产环境中往往还是由Hadoop分布式文件系统HDFS承担。
Spark在BDAS中的位置
Spark被设计成支持多场景的通用大数据计算平台,它可以解决大数据计算中的批处理,交互查询及流式计算等核心问题。Spark可以从多数据源的读取数据,并且拥有不断发展的机器学习库和图计算库供开发者使用。数据和计算在Spark内核及Spark的子模块中是打通的,这就意味着Spark内核和子模块之间成为一个整体。Spark的各个子模块以Spark内核为基础,进一步支持更多的计算场景,例如使用Spark SQL读入的数据可以作为机器学习库MLlib的输入。以下列举了一些在Spark平台上的计算场景。
Spark的应用场景举例
之前在大数据概述的课程中我们提到了Hadoop,大数据工程师都非常了解Hadoop MapRece一个最大的问题是在很多应用场景中速度非常慢,只适合离线的计算任务。这是由于MapRece需要将任务划分成map和rece两个阶段,map阶段产生的中间结果要写回磁盘,而在这两个阶段之间需要进行shuffle操作。Shuffle操作需要从网络中的各个节点进行数据拷贝,使其往往成为最为耗时的步骤,这也是Hadoop MapRece慢的根本原因之一,大量的时间耗费在网络磁盘IO中而不是用于计算。在一些特定的计算场景中,例如像逻辑回归这样的迭代式的计算,MapRece的弊端会显得更加明显。
那Spark是如果设计分布式计算的呢?首先我们需要理解Spark中最重要的概念--弹性分布数据集(Resilient Distributed Dataset),也就是RDD。
关键词:弹性分布数据集RDD
RDD是Spark中对数据和计算的抽象,是Spark中最核心的概念,它表示已被分片(partition),不可变的并能够被并行操作的数据集合。对RDD的操作分为两种transformation和action。Transformation操作是通过转换从一个或多个RDD生成新的RDD。Action操作是从RDD生成最后的计算结果。在Spark最新的版本中,提供丰富的transformation和action操作,比起MapRece计算模型中仅有的两种操作,会大大简化程序开发的难度。
RDD的生成方式只有两种,一是从数据源读入,另一种就是从其它RDD通过transformation操作转换。一个典型的Spark程序就是通过Spark上下文环境(SparkContext)生成一个或多个RDD,在这些RDD上通过一系列的transformation操作生成最终的RDD,最后通过调用最终RDD的action方法输出结果。
每个RDD都可以用下面5个特性来表示,其中后两个为可选的:
分片列表(数据块列表)
计算每个分片的函数
对父RDD的依赖列表
对key-value类型的RDD的分片器(Partitioner)(可选)
每个数据分片的预定义地址列表(如HDFS上的数据块的地址)(可选)
虽然Spark是基于内存的计算,但RDD不光可以存储在内存中,根据useDisk、useMemory、useOffHeap, deserialized、replication五个参数的组合Spark提供了12种存储级别,在后面介绍RDD的容错机制时,我们会进一步理解。值得注意的是当StorageLevel设置成OFF_HEAP时,RDD实际被保存到Tachyon中。Tachyon是一个基于内存的分布式文件系统,目前正在快速发展,在这里我们就不做详细介绍啦,可以通过其官方网站进一步了解。
DAG、Stage与任务的生成
Spark的计算发生在RDD的action操作,而对action之前的所有transformation,Spark只是记录下RDD生成的轨迹,而不会触发真正的计算。
Spark内核会在需要计算发生的时刻绘制一张关于计算路径的有向无环图,也就是DAG。举个例子,在下图中,从输入中逻辑上生成A和C两个RDD,经过一系列transformation操作,逻辑上生成了F,注意,我们说的是逻辑上,因为这时候计算没有发生,Spark内核做的事情只是记录了RDD的生成和依赖关系。当F要进行输出时,也就是F进行了action操作,Spark会根据RDD的依赖生成DAG,并从起点开始真正的计算。
逻辑上的计算过程:DAG
有了计算的DAG图,Spark内核下一步的任务就是根据DAG图将计算划分成任务集,也就是Stage,这样可以将任务提交到计算节点进行真正的计算。Spark计算的中间结果默认是保存在内存中的,Spark在划分Stage的时候会充分考虑在分布式计算中可流水线计算(pipeline)的部分来提高计算的效率,而在这个过程中,主要的根据就是RDD的依赖类型。
根据不同的transformation操作,RDD的依赖可以分为窄依赖(Narrow Dependency)和宽依赖(Wide Dependency,在代码中为ShuffleDependency)两种类型。窄依赖指的是生成的RDD中每个partition只依赖于父RDD(s) 固定的partition。宽依赖指的是生成的RDD的每一个partition都依赖于父 RDD(s) 所有partition。窄依赖典型的操作有map, filter, union等,宽依赖典型的操作有groupByKey, sortByKey等。可以看到,宽依赖往往意味着shuffle操作,这也是Spark划分stage的主要边界。对于窄依赖,Spark会将其尽量划分在同一个stage中,因为它们可以进行流水线计算。
RDD的宽依赖和窄依赖
最后我们再通过下图来详细解释一下Spark中的Stage划分。我们从HDFS中读入数据生成3个不同的RDD,通过一系列transformation操作后再将计算结果保存回HDFS。可以看到这幅DAG中只有join操作是一个宽依赖,Spark内核会以此为边界将其前后划分成不同的Stage. 同时我们可以注意到,在图中Stage2中,从map到union都是窄依赖,这两步操作可以形成一个流水线操作,通过map操作生成的partition可以不用等待整个RDD计算结束,而是继续进行union操作,这样大大提高了计算的效率。
Spark中的Stage划分
Ⅳ 大数据专业哪些大学有
北京大学
大数据是一个新的专业,国内首次出现这个专业是在2016年的时候,当时新设这个专业的高校全国只有3所有,其中就有北京大学。
2.对外经济贸易大学
与北大为同一批次开设大数据专业的学校还有对外经贸大学,很多人不知道这所学校是一所211工程大学,所以这个大数据专业应该是办得不错的。
3.中南大学
该校是湖南最好的大学,属于211和985工程学校。是第一批开设大数据与专业的高校。网上的一些排名中将该校的大数据专业排在了全国第一的位置。
4.中国人名大学
人大属于第二批开设大数据专业的高校,具体开设时间是在2017年。人大的这个专业虽然开设只有一两年的时间,但是实力应该是很强的,因为该校的统计学科在国内处于领先地位。
5.复旦大学
复旦大学的大数据专业是在2017年开设的,支撑学科主要涉及到了统计学、计算机科学和数学等学科,应用范围很广,几乎在所有的行业中都可以进行应用。
6.电子科技大学
电子科技大学位于成都,综合实力在全国范围内排前50位,在四川省中排名第2位,在全国电子科技内大学中排名第一。
(5)贵州伯克利大数据扩展阅读
数据科学与大数据技术专业,简称数科或大数据,旨在培养具有大数据思维、运用大数据思维及分析应用技术的高层次大数据人才。掌握计算机理论和大数据处理技术,从大数据应用的三个主要层面(即数据管理、系统开发、海量数据分析与挖掘)系统地培养学生掌握大数据应用中的各种典型问题的解决办法,实际提升学生解决实际问题的能力,具有将领域知识与计算机技术和大数据技术融合、创新的能力,能够从事大数据研究和开发应用的高层次人才。
大数据专业将从大数据应用的三个主要层面(即数据管理、系统开发、海量数据分析与挖掘)系统地帮助企业掌握大数据应用中的各种典型问题的解决办法,包括实现和分析协同过滤算法、运行和学习分类算法、分布式Hadoop集群的搭建和基准测试、分布式Hbase集群的搭建和基准测试、实现一个基于、Maprece的并行算法、部署Hive并实现一个的数据操作等等,实际提升企业解决实际问题的能力。
Ⅵ 美国哪些大学的大数据相关专业好
美国开设的大数据专业主要有,商业分析方向(Business Analytics),数据科学(Data Science)和机器学习(Machine Learning)方向,应用统计等回
南加大,斯坦福大学,加州答伯克利,纽约大学和哥伦比亚大学等都是有大数据专业的美国名校
Ⅶ 大数据研究生
本科阶段,开设大数据专业的广东高校有北京师范大学-香港浸会大学联合国际学院、、佛山科学技术学院、广东白云学院、肇庆学院、汕头大学、广东工业大学、广州大学、韩山师范学院、广东财经大学、广东技术师范学院、广东科技学院、广州商学院、北京理工大学珠海学院、广东技术师范学院天河学院、广州大学华软软件学院等。
大数据相关专业招收研究生的则有清华-伯克利深圳学院、中山大学(数据科学与计算机学院)等。
Ⅷ 大数据时代发展历程是什么
可按照时间点划分大数据的发展历程。