1. 大数据分析一般用什么工具呢

虽然数据分析的工具千万种,综合起来万变不离其宗。无非是数据获取、数据存储、数据管理、数据计算、数据分析、数据展示等几个方面。而SAS、R、SPSS、python、excel是被提到频率最高的数据分析工具。


  • Python

  • Python,是一种面向对象、解释型计算机程序设计语言。Python语法简洁而清晰,具有丰富和强大的类库。它常被昵称为胶水语言,能够把用其他语言制作的各种模块(尤其是C/C++)很轻松地联结在一起。

    常见的一种应用情形是,使用Python快速生成程序的原型(有时甚至是程序的最终界面),然后对其中有特别要求的部分,用更合适的语言改写,比如3D游戏中的图形渲染模块,性能要求特别高,就可以用C/C++重写,而后封装为Python可以调用的扩展类库。需要注意的是在您使用扩展类库时可能需要考虑平台问题,某些可能不提供跨平台的实现。

  • R软件

  • R是一套完整的数据处理、计算和制图软件系统。它可以提供一些集成的统计工具,但更大量的是它提供各种数学计算、统计计算的函数,从而使使用者能灵活机动的进行数据分析,甚至创造出符合需要的新的统计计算方法。

  • SPSS

  • SPSS是世界上最早的统计分析软件,具有完整的数据输入、编辑、统计分析、报表、图形制作等功能,能够读取及输出多种格式的文件。

  • Excel

  • 可以进行各种数据的处理、统计分析和辅助决策操作,广泛地应用于管理、统计财经、金融等众多领域。

  • SAS软件

  • SAS把数据存取、管理、分析和展现有机地融为一体。提供了从基本统计数的计算到各种试验设计的方差分析,相关回归分析以及多变数分析的多种统计分析过程,几乎囊括了所有最新分析方法,其分析技术先进,可靠。分析方法的实现通过过程调用完成。许多过程同时提供了多种算法和选项。

2. 大数据分析一般用什么工具分析

在大数据处理分析过程中常用的六大工具:

1、

Hadoop 是一个能够对大量数据进行分布式处理的软件框架。但是 Hadoop 是以一种可靠、高效、可伸缩的方式进行处理的。Hadoop 是可靠的,因为它假设计算元素和存储会失败,因此它维护多个工作数据副本,确保能够针对失败的节点重新分布处理。Hadoop 是高效的,因为它以并行的方式工作,通过并行处理加快处理速度。Hadoop 还是可伸缩的,能够处理 PB 级数据。此外,Hadoop 依赖于社区服务器,因此它的成本比较低,任何人都可以使用。

2、HPCC

HPCC,High Performance Computing and Communications(高性能计算与通信)的缩写。1993年,由美国科学、工程、技术联邦协调理事会向国会提交了“重大挑战项目:高性能计算与 通信”的报告,也就是被称为HPCC计划的报告,即美国总统科学战略项目,其目的是通过加强研究与开发解决一批重要的科学与技术挑战问题。HPCC是美国 实施信息高速公路而上实施的计划,该计划的实施将耗资百亿美元,其主要目标要达到:开发可扩展的计算系统及相关软件,以支持太位级网络传输性能,开发千兆 比特网络技术,扩展研究和教育机构及网络连接能力。

3、Storm

Storm是自由的开源软件,一个分布式的、容错的实时计算系统。Storm可以非常可靠的处理庞大的数据流,用于处理Hadoop的批量数据。Storm很简单,支持许多种编程语言,使用起来非常有趣。

4、Apache Drill

为了帮助企业用户寻找更为有效、加快Hadoop数据查询的方法,Apache软件基金会近日发起了一项名为“Drill”的开源项目。Apache Drill 实现了 Google's Dremel.

据Hadoop厂商MapR Technologies公司产品经理Tomer Shiran介绍,“Drill”已经作为Apache孵化器项目来运作,将面向全球软件工程师持续推广

5、RapidMiner

RapidMiner是世界领先的数据挖掘解决方案,在一个非常大的程度上有着先进技术。它数据挖掘任务涉及范围广泛,包括各种数据艺术,能简化数据挖掘过程的设计和评价。

6、Pentaho BI

Pentaho BI 平台不同于传统的BI 产品,它是一个以流程为中心的,面向解决方案(Solution)的框架。其目的在于将一系列企业级BI产品、开源软件、API等等组件集成起来,方便商务智能应用的开发。它的出现,使得一系列的面向商务智能的独立产品如Jfree、Quartz等等,能够集成在一起,构成一项项复杂的、完整的商务智能解决方案。

3. 大数据分析怎么做 ps数据挖掘工具求推荐

未至科技魔方是一款大数据模型平台,是一款基于服务总线与分布式云计算两大技术架构的一款数据分析、挖掘的工具平台,其采用分布式文件系统对数据进行存储,支持海量数据的处理。采用多种的数据采集技术,支持结构化数据及非结构化数据的采集。通过图形化的模型搭建工具,支持流程化的模型配置。通过第三方插件技术,很容易将其他工具及服务集成到平台中去。数据分析研判平台就是海量信息的采集,数据模型的搭建,数据的挖掘、分析最后形成知识服务于实战、服务于决策的过程,平台主要包括数据采集部分,模型配置部分,模型执行部分及成果展示部分等。
未至科技显微镜是一款大数据文本挖掘工具,是指从文本数据中抽取有价值的信息和知识的计算机处理技术, 包括文本分类、文本聚类、信息抽取、实体识别、关键词标引、摘要等。基于Hadoop MapRece的文本挖掘软件能够实现海量文本的挖掘分析。CKM的一个重要应用领域为智能比对, 在专利新颖性评价、科技查新、文档查重、版权保护、稿件溯源等领域都有着广泛的应用。

4. 大数据,数据挖掘在交通领域有哪些应用

交通领域大数据分析和应用的场景会相当多,这里面要注意两点,一个是大数据本身的技术处理平台,一个是数据分析和挖掘算法。具体场景当时写过点内容,如下:
对于公交线路规划和设计是一个大数据潜在的应用场景,传统的公交线路规划往往需要在前期投入大量的人力进行OD调查和数据收集。特别是在公交卡普及后可以看到,对于OD流量数据完全可以从公交一卡通中采集到相关的交通流量和流向数据,包括同一张卡每天的行走路线和换乘次数等详细信息。对于一个上千万人口的大城市而言,每天的流量数据都会相当大,单一分析一天的数据可能没有相关的价值,而分析一个周期的数据趋势变化则会相当有价值。结合交通流量流向数据趋势变化,可以很好的帮助公交部门进行公交运营线路的调整,换乘站的设计等很多内容。这个方法可能很早就有人想到,但是在公交卡没有普及或海量数据处理和计算能力没有跟上的时候确实很难实际落地操作,而现在则是完全可以落地操作的时候了。
从单一的公交流量流向数据动态分析仅仅是一个方面,大数据往往更加强调相关性分析。比如对于在某一个时间段内公交流量和流向数据发生明细的趋势变化的时候,这个趋势变化的究竟和哪些潜在的大事件或其它影响因素的变化存在相关性,如何去分析这些相关性并做出正确的应对。举个简单的例子来说,当市中心区内的房屋租金持续增长的时候一定会影响到交通流的变化,很多人可能会搬离到更远的地方去居住,自然会形成更多的新增公交流量和流向信息。在《大数据时代》里面谈到更多的会关心相关性而不是因果只是一个方面的内容,实际上往往探索因果仍然很重要,就拿尿片和啤酒的例子来说看起来很简单,但是究竟是谁发现了这种相关性才更加重要,发现相关性的过程往往是从果寻因的过程,否则你也很难真正就确定是具备相关性。
其次就智能交通来说,现在的智慧交通应用往往已经能够很方面的进行整个大城市环境下的交通状况监控并发布相应的道路状况信息。在GPS导航中往往也可以实时的看到相应的拥堵路况等信息,而方便驾驶者选择新的路线。但是这仍然是一种事后分析和处理的机制,一个好的智能导航和交通流诱导系统一定是基于大量的实时数据分析为每个车辆给出最好的导航路线,而不是在事后进行处理。对于智能交通中的交通流分配和诱导等模型很复杂,而且面对大量的实时数据采集,根据模型进行实时分分析和计算,给出有价值的结果,这个在原有的信息技术下确实很难解决。随着物联网和车联网,分布式计算,基于大数据的实时流处理等各种技术的不断城市,智能的交通导航和趋势分析预测将逐步成为可能。
还有一个在国外大片中经常能够看到的就是实时的车辆追踪,随着智慧城市的建设,城市里面到处都是摄像头采集数据,当锁定一个车辆后如何根据车辆的特征或车牌号等信息,实时的追踪到车辆的行走路线和位置。这里面往往需要实时的视频数据采集,采集数据的实时分析和比对,给出相应的参考信息和数据。这个个人认为是具有相当大的难度,要知道对于视频流和图像信息的比对和分析往往更加耗费计算资源,需要更长的计算周期,要从城市成千上万个摄像头里面采集数据并进行实时分析完全满足大数据常说的海量数据,异构数据,速度和价值等四个维度的特征。基于车辆能够做到,基于人当然同样也可以做到,希望这类应用能够逐步的出现,至少现在从硬件水平能力和技术基础上已经具备这种大数据应用的能力。
-

5. 大数据分析,大数据开发,数据挖掘 所用到技术和工具

大数据分析是一个含义广泛的术语,是指数据集,如此庞大而复杂的,他们需要专门设计的硬件和软件工具进行处理。该数据集通常是万亿或EB的大小。这些数据集收集自各种各样的来源:传感器,气候信息,公开的信息,如杂志,报纸,文章。大数据分析产生的其他例子包括购买交易记录,网络日志,病历,军事监控,视频和图像档案,及大型电子商务。

大数据分析,他们对企业的影响有一个兴趣高涨。大数据分析是研究大量的数据的过程中寻找模式,相关性和其他有用的信息,可以帮助企业更好地适应变化,并做出更明智的决策。

一、Hadoop

Hadoop是一个开源框架,它允许在整个集群使用简单编程模型计算机的分布式环境存储并处理大数据。它的目的是从单一的服务器到上千台机器的扩展,每一个台机都可以提供本地计算和存储。

Hadoop 是一个能够对大量数据进行分布式处理的软件框架。但是 Hadoop 是以一种可靠、高效、可伸缩的方式进行处理的。Hadoop 是可靠的,即使计算元素和存储会失败,它维护多个工作数据副本,确保能够针对失败的节点重新分布处理。Hadoop是高效的,它采用并行的方式工作,通过并行处理加快处理速度。Hadoop 还是可伸缩的,能够处理 PB 级数据。此外,Hadoop 依赖于社区服务器,因此它的成本比较低,任何人都可以使用。

Hadoop是轻松架构和使用的分布式计算平台。用户可以轻松地在Hadoop上开发和运行处理海量数据的应用程序。它主要有以下几个优点:

1、高可靠性。Hadoop按位存储和处理数据的能力值得人们信赖。

2、高扩展性。Hadoop是在可用的计算机集簇间分配数据并完成计算任务的,这些集簇可以方便地扩展到数以千计的节点中。

3、高效性。Hadoop能够在节点之间动态地移动数据,并保证各个节点的动态平衡,因此处理速度非常快。

4、高容错性。Hadoop能够自动保存数据的多个副本,并且能够自动将失败的任务重新分配。

Hadoop带有用 Java 语言编写的框架,因此运行在 Linux 生产平台上是非常理想的。Hadoop 上的应用程序也可以使用其他语言编写,比如 C++。

二、HPCC

HPCC,High Performance Computing and Communications(高性能计算与通信)的缩写。1993年,由美国科学、工程、技术联邦协调理事会向国会提交了"重大挑战项目:高性能计算与通信"的报告,也就是被称为HPCC计划的报告,即美国总统科学战略项目,其目的是通过加强研究与开发解决一批重要的科学与技术挑战问题。HPCC是美国实施信息高速公路而上实施的计划,该计划的实施将耗资百亿美元,其主要目标要达到:开发可扩展的计算系统及相关软件,以支持太位级网络传输性能,开发千兆比特网络技术,扩展研究和教育机构及网络连接能力。

十、Tableau Public

1、什么是Tableau Public -大数据分析工具

这是一个简单直观的工具。因为它通过数据可视化提供了有趣的见解。Tableau Public的百万行限制。因为它比数据分析市场中的大多数其他玩家更容易使用票价。使用Tableau的视觉效果,您可以调查一个假设。此外,浏览数据,并交叉核对您的见解。

2、Tableau Public的使用

您可以免费将交互式数据可视化发布到Web;无需编程技能;发布到Tableau Public的可视化可以嵌入到博客中。此外,还可以通过电子邮件或社交媒体分享网页。共享的内容可以进行有效硫的下载。这使其成为最佳的大数据分析工具。

3、Tableau Public的限制

所有数据都是公开的,并且限制访问的范围很小;数据大小限制;无法连接到[R ;读取的唯一方法是通过OData源,是Excel或txt。

十一、OpenRefine

1、什么是OpenRefine - 数据分析工具

以前称为GoogleRefine的数据清理软件。因为它可以帮助您清理数据以进行分析。它对一行数据进行操作。此外,将列放在列下,与关系数据库表非常相似。

2、OpenRefine的使用

清理凌乱的数据;数据转换;从网站解析数据;通过从Web服务获取数据将数据添加到数据集。例如,OpenRefine可用于将地址地理编码到地理坐标。

3、OpenRefine的局限性

Open Refine不适用于大型数据集;精炼对大数据不起作用

十二、KNIME

1、什么是KNIME - 数据分析工具

KNIME通过可视化编程帮助您操作,分析和建模数据。它用于集成各种组件,用于数据挖掘和机器学习。

2、KNIME的用途

不要写代码块。相反,您必须在活动之间删除和拖动连接点;该数据分析工具支持编程语言;事实上,分析工具,例如可扩展运行化学数据,文本挖掘,蟒蛇,和[R 。

3、KNIME的限制

数据可视化不佳

十三、Google Fusion Tables

1、什么是Google Fusion Tables

对于数据工具,我们有更酷,更大版本的Google Spreadsheets。一个令人难以置信的数据分析,映射和大型数据集可视化工具。此外,Google Fusion Tables可以添加到业务分析工具列表中。这也是最好的大数据分析工具之一,大数据分析十八般工具。

2、使用Google Fusion Tables

在线可视化更大的表格数据;跨越数十万行进行过滤和总结;将表与Web上的其他数据组合在一起;您可以合并两个或三个表以生成包含数据集的单个可视化;

3、Google Fusion Tables的限制

表中只有前100,000行数据包含在查询结果中或已映射;在一次API调用中发送的数据总大小不能超过1MB。

十四、NodeXL

1、什么是NodeXL

它是关系和网络的可视化和分析软件。NodeXL提供精确的计算。它是一个免费的(不是专业的)和开源网络分析和可视化软件。NodeXL是用于数据分析的最佳统计工具之一。其中包括高级网络指标。此外,访问社交媒体网络数据导入程序和自动化。

2、NodeXL的用途

这是Excel中的一种数据分析工具,可帮助实现以下方面:

数据导入;图形可视化;图形分析;数据表示;该软件集成到Microsoft Excel 2007,2010,2013和2016中。它作为工作簿打开,包含各种包含图形结构元素的工作表。这就像节点和边缘;该软件可以导入各种图形格式。这种邻接矩阵,Pajek .net,UCINet .dl,GraphML和边缘列表。

3、NodeXL的局限性

您需要为特定问题使用多个种子术语;在稍微不同的时间运行数据提取。

十五、Wolfram Alpha

1、什么是Wolfram Alpha

它是Stephen Wolfram创建的计算知识引擎或应答引擎。

2、Wolfram Alpha的使用

是Apple的Siri的附加组件;提供技术搜索的详细响应并解决微积分问题;帮助业务用户获取信息图表和图形。并有助于创建主题概述,商品信息和高级定价历史记录。

3、Wolfram Alpha的局限性

Wolfram Alpha只能处理公开数字和事实,而不能处理观点;它限制了每个查询的计算时间;这些数据分析统计工具有何疑问?

十六、Google搜索运营商

1、什么是Google搜索运营商

它是一种强大的资源,可帮助您过滤Google结果。这立即得到最相关和有用的信息。

2、Google搜索运算符的使用

更快速地过滤Google搜索结果;Google强大的数据分析工具可以帮助发现新信息。

十七、Excel解算器

1、什么是Excel解算器

Solver加载项是Microsoft Office Excel加载项程序。此外,它在您安装Microsoft Excel或Office时可用。它是excel中的线性编程和优化工具。这允许您设置约束。它是一种先进的优化工具,有助于快速解决问题。

2、求解器的使用

Solver找到的最终值是相互关系和决策的解决方案;它采用了多种方法,来自非线性优化。还有线性规划到进化算法和遗传算法,以找到解决方案。

3、求解器的局限性

不良扩展是Excel Solver缺乏的领域之一;它会影响解决方案的时间和质量;求解器会影响模型的内在可解性;

十八、Dataiku DSS

1、什么是Dataiku DSS

这是一个协作数据科学软件平台。此外,它还有助于团队构建,原型和探索。虽然,它可以更有效地提供自己的数据产品。

2、Dataiku DSS的使用

Dataiku DSS - 数据分析工具提供交互式可视化界面。因此,他们可以构建,单击,指向或使用SQL等语言。

3、Dataiku DSS的局限性

有限的可视化功能;UI障碍:重新加载代码/数据集;无法轻松地将整个代码编译到单个文档/笔记本中;仍然需要与SPARK集成

以上的工具只是大数据分析所用的部分工具,小编就不一一列举了,下面把部分工具的用途进行分类:

1、前端展现

用于展现分析的前端开源工具有JasperSoft,Pentaho, Spagobi, Openi, Birt等等。

用于展现分析商用分析工具有Style Intelligence、RapidMiner Radoop、Cognos, BO, Microsoft Power BI, Oracle,Microstrategy,QlikView、 Tableau 。

国内的有BDP,国云数据(大数据分析魔镜),思迈特,FineBI等等。

2、数据仓库

有Teradata AsterData, EMC GreenPlum, HP Vertica 等等。

3、数据集市

有QlikView、 Tableau 、Style Intelligence等等。

当然学大数据分析也有很多坑:

《转行大数据分析师后悔了》、《零基础学大数据分析现实吗》、《大数据分析培训好就业吗》、《转行大数据分析必知技能》

6. 大数据分析一般用什么工具分析

大数据分析的前瞻性使得很多公司以及企业都开始使用大数据分析对公司的决策做出帮助,而大数据分析是去分析海量的数据,所以就不得不借助一些工具去分析大数据,。一般来说,数据分析工作中都是有很多层次的,这些层次分别是数据存储层、数据报表层、数据分析层、数据展现层。对于不同的层次是有不同的工具进行工作的。下面小编就对大数据分析工具给大家好好介绍一下。

首先我们从数据存储来讲数据分析的工具。我们在分析数据的时候首先需要存储数据,数据的存储是一个非常重要的事情,如果懂得数据库技术,并且能够操作好数据库技术,这就能够提高数据分析的效率。而数据存储的工具主要是以下的工具。

1、MySQL数据库,这个对于部门级或者互联网的数据库应用是必要的,这个时候关键掌握数据库的库结构和SQL语言的数据查询能力。

2、SQL Server的最新版本,对中小企业,一些大型企业也可以采用SQL Server数据库,其实这个时候本身除了数据存储,也包括了数据报表和数据分析了,甚至数据挖掘工具都在其中了。

3、DB2,Oracle数据库都是大型数据库了,主要是企业级,特别是大型企业或者对数据海量存储需求的就是必须的了,一般大型数据库公司都提供非常好的数据整合应用平台;

接着说数据报表层。一般来说,当企业存储了数据后,首先要解决报表的问题。解决报表的问题才能够正确的分析好数据库。关于数据报表所用到的数据分析工具就是以下的工具。

1、Crystal Report水晶报表,Bill报表,这都是全球最流行的报表工具,非常规范的报表设计思想,早期商业智能其实大部分人的理解就是报表系统,不借助IT技术人员就可以获取企业各种信息——报表。

2、Tableau软件,这个软件是近年来非常棒的一个软件,当然它已经不是单纯的数据报表软件了,而是更为可视化的数据分析软件,因为很多人经常用它来从数据库中进行报表和可视化分析。

第三说的是数据分析层。这个层其实有很多分析工具,当然我们最常用的就是Excel,我经常用的就是统计分析和数据挖掘工具;

1、Excel软件,首先版本越高越好用这是肯定的;当然对Excel来讲很多人只是掌握了5%Excel功能,Excel功能非常强大,甚至可以完成所有的统计分析工作!但是我也常说,有能力把Excel玩成统计工具不如专门学会统计软件;

2、SPSS软件:当前版本是18,名字也改成了PASW Statistics;我从3.0开始Dos环境下编程分析,到现在版本的变迁也可以看出SPSS社会科学统计软件包的变化,从重视医学、化学等开始越来越重视商业分析,现在已经成为了预测分析软件。

最后说表现层的软件。一般来说表现层的软件都是很实用的工具。表现层的软件就是下面提到的内容。

1、PowerPoint软件:大部分人都是用PPT写报告。

2、Visio、SmartDraw软件:这些都是非常好用的流程图、营销图表、地图等,而且从这里可以得到很多零件;

3、Swiff Chart软件:制作图表的软件,生成的是Flash

7. 大数据分析需要哪些工具

说到大数据,肯定少不了分析软件,这应该是大数据工作的根基,但市面上很多各种分析软件,如果不是过来人,真的很难找到适合自己或符合企业要求的。小编通过各大企业对大数据相关行业的岗位要求,总结了以下几点:
(1)SQL数据库的基本操作,会基本的数据管理
(2)会用Excel/SQL做基本的数据分析和展示
(3)会用脚本语言进行数据分析,Python or R
(4)有获取外部数据的能力,如爬虫
(5)会基本的数据可视化技能,能撰写数据报告
(6)熟悉常用的数据挖掘算法:回归分析、决策树、随机森林、支持向量机等
对于学习大数据,总体来说,先学基础,再学理论,最后是工具。基本上,每一门语言的学习都是要按照这个顺序来的。
1、学习数据分析基础知识,包括概率论、数理统计。基础这种东西还是要掌握好的啊,基础都还没扎实,知识大厦是很容易倒的哈。
2、你的目标行业的相关理论知识。比如金融类的,要学习证券、银行、财务等各种知识,不然到了公司就一脸懵逼啦。
3、学习数据分析工具,软件结合案列的实际应用,关于数据分析主流软件有(从上手度从易到难):Excel,SPSS,stata,R,Python,SAS等。
4、学会怎样操作这些软件,然后是利用软件从数据的清洗开始一步步进行处理,分析,最后输出结果,检验及解读数据。

8. 大数据挖掘工具 公司需要一款数据挖掘的工具做数据挖掘 急用 求推荐

ethink软件 中科大数据实验室团队研发的 很棒

9. 大数据分析工具有哪些,有什么特点

大数据是宝藏,人工智能是工匠。大数据给了我们前所未有的收集海量信息的可能,因为数据交互广阔,存储空间近乎无限,所以我们再也不用因“没地方放”而不得弃掉那些“看似无用”的数据。
在浩瀚的数据中,如果放置这些数据,不去分析整理,那就相当于一堆废的数据,对我们的发展没有任何意义。今天给大家分享的就是:大数据分析工具的介绍和使用。
工具一:Pentaho BI
Pentaho BI和传统的一些BI产品不一样,这个框架以流程作为中心,再面向Solution(解决方案)。Pentaho BI的主要目的是集成一系列API、开源软件以及企业级别的BI产品,便于商务智能的应用开发。自从Pentaho BI出现后,它使得Quartz、Jfree等面向商务智能的这些独立产品,有效的集成一起,再构成完整且复杂的一项项商务智能的解决方案。

工具二:RapidMiner
在世界范围内,RapidMiner是比较好用的一个数据挖掘的解决方案。很大程度上,RapidMiner有比较先进的技术。RapidMiner数据挖掘的任务涉及了很多的范围,主要包括可以简化数据挖掘的过程中一些设计以及评价,还有各类数据艺术。
工具三:Storm
Storm这个实时的计算机系统,它有分布式以及容错的特点,还是开源软件。Storm可以对非常庞大的一些数据流进行处理,还可以运用在Hadoop批量数据的处理。Storm支持各类编程语言,而且很简单,使用它时相当有趣。像阿里巴巴、支付宝、淘宝等都是它的应用企业。
工具四:HPCC
某个国家为了实施信息高速路施行了一个计划,那就是HPCC。这个计划总共花费百亿美元,主要目的是开发可扩展的一些计算机系统及软件,以此来开发千兆比特的网络技术,还有支持太位级网络的传输性能,进而拓展研究同教育机构与网络连接的能力。
工具五:Hadoop
Hadoop这个软件框架主要是可伸缩、高效且可靠的进行分布式的处理大量数据。Hadoop相当可靠,它假设了计算元素以及存储可能失败,基于此,它为了保证可以重新分布处理失败的节点,维护很多工作数据的副本。Hadoop可伸缩,是因为它可以对PB级数据进行处理。
当数据变得多多益善,当移动设备、穿戴设备以及其他一切设备都变成了数据收集的“接口”,我们便可以尽可能的让数据的海洋变得浩瀚无垠,因为那里面“全都是宝”。