1. 大数据的应用领域有哪些

1.了解和定位客户
这是大数据目前最广为人知的应用领域。很多企业热衷于社交媒体数据、浏览器日志、文本挖掘等各类数据集,通过大数据技术创建预测模型,从而更全面地了解客户以及他们的行为、喜好。
利用大数据,美国零售商Target公司甚至能推测出客户何时会有Baby;电信公司可以更好地预测客户流失;沃尔玛可以更准确的预测产品销售情况;汽车保险公司能更真实的了解客户实际驾驶情况。
滑雪场利用大数据来追踪和锁定客户。如果你是一名狂热的滑雪者,想象一下,你会收到最喜欢的度假胜地的邀请;或者收到定制化服务的短信提醒;或者告知你最合适的滑行线路。。。。。。同时提供互动平台(网站、手机APP)记录每天的数据——多少次滑坡,多少次翻越等等,在社交媒体上分享这些信息,与家人和朋友相互评比和竞争。
除此之外,政府竞选活动也引入了大数据分析技术。一些人认为,奥巴马在2012年总统大选中获胜,归功于他们团队的大数据分析能力更加出众。
2.了解和优化业务流程
大数据也越来越多地应用于优化业务流程,比如供应链或配送路径优化。通过定位和识别系统来跟踪货物或运输车辆,并根据实时交通路况数据优化运输路线。
人力资源业务流程也在使用大数据进行优化。Sociometric Solutions公司通过在员工工牌里植入传感器,检测其工作场所及社交活动——员工在哪些工作场所走动,与谁交谈,甚至交流时的语气如何。美国银行在使用中发现呼叫中心表现最好的员工——他们制定了小组轮流休息制度,平均业绩提高了23%。
如果在手机、钥匙、眼镜等随身物品上粘贴RFID标签,万一不小心丢失就能迅速定位它们。假想一下未来可能创造出贴在任何东西上的智能标签。它们能告诉你的不仅是物体在哪里,还可以反馈温度,湿度,运动状态等等。这将打开一个全新的大数据时代,“大数据”领域寻求共性的信息和模式,那么孕育其中的“小数据”着重关注单个产品。
3.提供个性化服务
大数据不仅适用于公司和政府,也适用于我们每个人,比如从智能手表或智能手环等可穿戴设备采集的数据中获益。Jawbone的智能手环可以分析人们的卡路里消耗、活动量和睡眠质量等。Jawbone公司已经能够收集长达60年的睡眠数据,从中分析出一些独到的见解反馈给每个用户。从中受益的还有网络平台“寻找真爱”,大多数婚恋网站都使用大数据分析工具和算法为用户匹配最合适的对象。
4.改善医疗保健和公共卫生
大数据分析的能力可以在几分钟内解码整个DNA序列,有助于我们找到新的治疗方法,更好地理解和预测疾病模式。试想一下,当来自所有智能手表等可穿戴设备的数据,都可以应用于数百万人及其各种疾病时,未来的临床试验将不再局限于小样本,而是包括所有人!
苹果公司的一款健康APP ResearchKit有效将手机变成医学研究设备。通过收集用户的相关数据,可以追踪你一天走了多少步,或者提示你化疗后感觉如何,帕金森病进展如何等问题。研究人员希望这一过程变得更容易、更自动化,吸引更多的参与者,并提高数据的准确度。
大数据技术也开始用于监测早产儿和患病婴儿的身体状况。通过记录和分析每个婴儿的每一次心跳和呼吸模式,提前24小时预测出身体感染的症状,从而及早干预,拯救那些脆弱的随时可能生命危险的婴儿。
更重要的是,大数据分析有助于我们监测和预测流行性或传染性疾病的暴发时期,可以将医疗记录的数据与有些社交媒体的数据结合起来分析。比如,谷歌基于搜索流量预测流感爆发,尽管该预测模型在2014年并未奏效——因为你搜索“流感症状”并不意味着真正生病了,但是这种大数据分析的影响力越来越为人所知。
5.提高体育运动技能
如今大多数顶尖的体育赛事都采用了大数据分析技术。用于网球比赛的IBM SlamTracker工具,通过视频分析跟踪足球落点或者棒球比赛中每个球员的表现。许多优秀的运动队也在训练之外跟踪运动员的营养和睡眠情况。NFL开发了专门的应用平台,帮助所有球队根据球场上的草地状况、天气状况、以及学习期间球员的个人表现做出最佳决策,以减少球员不必要的受伤。
还有一件非常酷的事情是智能瑜伽垫:嵌入在瑜伽垫中的传感器能对你的姿势进行反馈,为你的练习打分,甚至指导你在家如何练习。
6.提升科学研究
大数据带来的无限可能性正在改变科学研究。欧洲核子研究中心(CERN)在全球遍布了150个数据中心,有65,000个处理器,能同时分析30pb的数据量,这样的计算能力影响着很多领域的科学研究。比如政府需要的人口普查数据、自然灾害数据等,变的更容易获取和分析,从而为我们的健康和社会发展创造更多的价值。
7.提升机械设备性能
大数据使机械设备更加智能化、自动化。例如,丰田普锐斯配备了摄像头、全球定位系统以及强大的计算机和传感器,在无人干预的条件下实现自动驾驶。Xcel Energy在科罗拉多州启动了“智能电网”的首批测试,在用户家中安装智能电表,然后登录网站就可实时查看用电情况。“智能电网”还能够预测使用情况,以便电力公司为未来的基础设施需求进行规划,并防止出现电力耗尽的情况。在爱尔兰,杂货连锁店Tescos的仓库员工佩戴专用臂带,追踪货架上的商品分配,甚至预测一项任务的完成时间。
8.强化安全和执法能力
大数据在改善安全和执法方面得到了广泛应用。美国国家安全局(NSA)利用大数据技术,检测和防止网络攻击(挫败恐怖分子的阴谋)。警察运用大数据来抓捕罪犯,预测犯罪活动。信用卡公司使用大数据来检测欺诈交易等等。
2014年2月,芝加哥警察局对大数据生成的“名单”——有可能犯罪的人员,进行通告和探访,目的是提前预防犯罪。
9.改善城市和国家建设
大数据被用于改善我们城市和国家的方方面面。目前很多大城市致力于构建智慧交通。车辆、行人、道路基础设施、公共服务场所都被整合在智慧交通网络中,以提升资源运用的效率,优化城市管理和服务。
加州长滩市正在使用智能水表实时检测非法用水,帮助一些房主减少80%的用水量。洛杉矶利用磁性道路传感器和交通摄像头的数据来控制交通灯信号,从而优化城市的交通流量。据统计目前已经控制了全市4500个交通灯,将交通拥堵状况减少了约16%。
10.金融交易
大数据在金融交易领域应用也比较广泛。大多数股票交易都是通过一定的算法模型进行决策的,如今这些算法的输入会考虑来自社交媒体、新闻网络的数据,以便更全面的做出买卖决策。同时根据客户的需求和愿望,这些算法模型也会随着市场的变化而变化。

2. 大数据应用主要是应用在哪些方面

很多方抄面,最典型是分析垃圾邮件内容,过滤垃圾信息。另外还有搜索引擎,图像识别,语音识别等。一般平民很难接触到大数据,需要很庞大的数据量得出的结果才有意义,所以大数据是有门槛的。但是大数据仍然在不知不觉间帮助我们。

3. 大数据在互联网用户系统中的应用

大数据在互联网用户系统中的应用
但是对于今日的互联网和移动互联网,大数据的规模和应用深度早已不次于传统的电信、民航等行业,甚至超过不少。因此笔者还是想写些东西浅谈一下互联网的大数据应用,权当抛砖引玉,也希望更多的朋友参与交流和讨论。
首先,第一篇想谈一下互联网的用户系统。无论互联网还是移动互联网,本身具有很大的特性就是互联,所以我们都可以称之为互联网,或者说移动互联网是互联网的一个子集和延伸。
在传统的电信、民航、能源等行业,企业的客户和主体用户构成都是有身份ID的。比如电信行业中身份证登记的手机卡号,比如民航用户乘坐航班登机的身份证或护照信息等,这些信息可以作为基本的用户身份ID,便于企业对其用户、客户进行身份辨别,并对后续的用户行为进行跟踪和分析。传统企业所存储的用户信息的很大优势在于完整性,很多先天的比如姓名、性别、年龄甚至籍贯等真实的基础身份信息都可以简单获得。而在互联网上,用户的访问都是匿名的,即使用户在接入互联网的时候使用的登记信息是实名的,但那主要是提供给电信服务商和公共安全机构备案而用。普通的互联网网站在用户面前是完全透明的被"围观"的,这个状况在web1.0 的主要产品--门户网站中最为典型。到了web2.0 时代,互联网开始变得互动起来,用户从简单的匿名浏览,变成了可以通过注册身份参与信息的制造和流通。这个时候,诞生了这个时代在谈的互联网大数据应用中非常重要的一个非决定性条件--用户身份系统。为什么说是"非决定性条件"呢?因为,在这之前,大量的数据分析也是可以做的,但是由于对用户缺乏身份缺乏甄别,因此数据分析能够应用的场景和得到的数据都相对很有限,但并不代表不能做大数据分析。而web2.0的用户身份系统诞生,则使互联网某种程度上具有了和传统行业同样的用户身份记录系统,数据统计和分析都可以更精准和深入。其中,以腾讯QQ、新浪UC等PC桌面产品为代表的互联网早期产品,应该是建立了互联网更早的用户身份系统,我们也可以看到这些系统在其后续的web产品铺开时同样被继承了过来。
那么,互联网的用户身份系统,一般都具有哪些信息呢?
打开任何一个网站,我们都可以看到注册页面需要填写用户名/email,性别,年龄 等基本信息。当然,不同的网站和互联网产品有不同的用户资料细化的程度。拿现在比较流行的几款产品做比较,其他互联网产品大多类似:1.新浪微博中用户可以填写自己的昵称、头像、真实姓名、所在地、性别、生日、博客地址、email、QQ/MSN、自我介绍、用户标签、教育信息、职业信息……;2.腾讯QQ客户端上可以填写头像、昵称、个性签名、姓名、性别、英文名、生日、血型、生肖、故乡、所在地、邮编、电话、学历、职业、语言、手机……
看起来还真不少,那么网站要用户的这些信息会被干嘛用呢?
这里笔者刘三德认为主要有以下几点:1. 展示自我;2.作为唯一的身份ID用作用户身份区别;3.搜索和推荐相关;4.网站自身可以做用户分析和用户行为跟踪。展现自我放到第一位是因为这是从产品满足用户需求的角度决定的,用户资料的首要任务就是为了作为用户唯一的可识别身份标识展示自我。其次,搜索和推荐相关这一点笔者刘三德计划在后续用专门的篇章来写,此处简单理解即可。最后一点,也就是本文所关注的一点,就是用用户身份来做数据分析。涉及到的用户分析主要维度为用户资料和用户行为。同样,用户行为也计划在后续篇章专门来写,本文着重讨论一下用户资料的分析。
可能行业内的一些文章和老前辈的观点,数据首先要量大、其次要有高的复杂度,才可以称为大数据。但笔者认为,大数据在一维的层次上不一定具有很强的复杂度,大部分是由最简单的数据形式构成。就譬如用户资料,一个网站如果有一千万的注册用户,如果每个用户的资料具有6个有效字段,就是6000万的有效数据。而将这6000万的有效数据通过一层或者几层简单的统计叠加分析、交叉分析等,在计算上本身就具有了不小的复杂度。何况现今的互联网产品,尤其社交类产品如FACEBOOK,腾讯QQ、新浪微博等动辄上亿的注册用户,本身用户系统就是一个非常具有价值的大数据。[page]
通过分析用户系统可以得到什么呢?
当然,用户填写的注册资料中包含的资料,都是最基础的分析数据。还是用数据说话,如下图:

以上图片来自互联网
以上数据是第三方机构公布的,而且都是最简单的一维数据,我们可以看到很多家网站的用户资料对比(上面引用的部分数据来源也可为线上调查问卷等形式)。对于独立的一个网站来说,用户资料的分析当然只是局限在自己的网站范围之内。进入互联网web2.0时代以后,大家都开始更加重视用户和用户体验,对于网站自身用户的特征进行分析,可以更好的网站的用户特性分布,方便针对网站的用户群特点更有针对性的进行对应的产品设计和研发。比如通过了解用户的消费层次等,也可以更好的提供用户消费相关展示和服务。
那么,无用户身份信息的互联网是否不再大数据?--不用注册的用户身份系统的。
可能有的朋友会对这个话题存疑问,也可能有的朋友会惊恐,认为隐私泄露了,其实这里的应用也非常简单。在类似传统的web1.0 门户类以展示为主的互联网产品中,也是可以做数据的分析和挖掘的,而且也有比较成熟的方案。是否有朋友曾经经历过以下场景:在网络上搜索汽车、查了半天汽车资料,一个小时以后再随手打开的一个图书阅读网站上居然出现了"汽车广告".其实,即使我们没有在这些网站上注册,网络等搜索引擎本身还是可以为用户标识一个唯一的身份信息,虽然这个身份信息只是临时的,可能有效期也只有几天左右。但是,这依然是一种唯一的用户身份,只不过是记录的信息有限而已,但是仍然为用户行为分析提供了很大的帮助。感兴趣的朋友可以搜索"google adsense隐私政策" 进行相关了解,此处不在赘述。
用户资料系统方便了一系列的大数据挖掘
除了传统的互联网桌面端和web端产品,最近几年突飞猛进的移动互联网以及终端应用,基本也都有完备的用户信息系统。apple苹果公司做了app store,迄今为止的应用下载次数突破250亿次,而每一次的下载都需要使用唯一的用户ID,通过分析,苹果可能比你父母更加了解你想要什么--这属于用户行为分析范畴,后续将专门讨论。
总之,用户身份和资料的分析是互联网大数据分析中最基础的分析,用户身份系统在互联网的大数据时代,为后续的用户行为分析和对应的企业产品、服务设计提供了基石,也为更加深入的数据挖掘奠定了基础。

4. 大数据和人工智能在互联网金融领域有哪些应用

大数据从四个方面改变了金融机构传统的数据运作方式,从而实现了巨大的商业价值。这四个方面(“四个C”)包括:数据质量的兼容性(Compatibility)、数据运用的关联性(Connectedness)、数据分析的成本(Cost)以及数据价值的转化(Capitalization)。

大数据在金融业的应用场景正在逐步拓展。在海外,大数据已经在金融行业的风险控制、运营管理、销售支持和商业模式创新等领域得到了全面尝试。在国内,金融机构对大数据的应用还基本处于起步阶段。数据整合和部门协调等关键环节的挑战仍是阻碍金融机构将数据转化为价值的主要瓶颈。

数据技术与数据经济的发展是持续实现大数据价值的支撑。深度应用正在将传统IT从“后端”不断推向“前台”,而存量架构与创新模块的有效整合是传统金融机构在技术层面所面临的主要挑战。此外,数据生态的发展演进有其显著的社会特征。作为其中的一员,金融机构在促进数据经济的发展上任重道远。

无论是在金融企业还是非金融企业中,数据应用及业务创新的生命周期都包含五个阶段:业务定义需求;IT部门获取并整合数据;数据科学家构建并完善算法与模型;IT发布新洞察;业务应用并衡量洞察的实际成效。

在今天的大数据环境下,生命周期仍维持原样,而唯一变化的是“数据科学家”在生命周期中所扮演的角色。大数据将允许其运用各种新的算法与技术手段,帮助IT不断挖掘新的关联洞察,更好地满足业务需求。

5. 大数据在生活中有哪些应用

一、农业互联网大数据在农牧业上的运用关键就是指根据将来商业服务要求的分折来开展牧业商品生产制造,减少菜贱伤农的几率。二、金融业互联网大数据在金融业运用范畴范围广。互联网大数据在金融业的运用能够小结为下列2个层面:A : 大数据营销:根据顾客消费习惯性、所在位置、消费时间开展强烈推荐。B : 风险防控:根据顾客消费和现金流量出示资信评级或股权融资适用,运用顾客社交媒体个人行为纪录透支卡风控。
三、电子商务电商数据比较集中,信息量大,类型较多,未来运用大数据将有大量的空间,包含分折潮流趋势,消费发展趋势、地区消费特性、顾客消费习惯性、各种各样消费者行为的相关性、消费市场、危害消费的关键要素等。

四、医疗器械行业医疗器械行业有着很多的病案,病理报告,痊愈计划方案,药品汇报这些。在将来,凭借数据管理平台人们能够 搜集不一样病案和医治计划方案,及其患者的本质特征,能够 创建对于病症特性的数据库查询。

五、零售业零售业大数据的应用有2个方面,1个方面是零售业能够 掌握顾客消费爱好和发展趋势,开展货品的大数据营销,减少营销推广成本费。另一个方面是根据顾客选购商品,为顾客出示将会选购的其他商品,扩张销售总额,也归属于大数据营销层面。

6. 大数据在现实中有哪些应用

一、农业


互联网大数据在农牧业上的运用关键就是指根据将来商业服务要求的分折来开展牧业商品生产制造,减少菜贱伤农的几率。


二、金融业


互联网大数据在金融业运用范畴范围广。互联网大数据在金融业的运用能够小结为下列2个层面:A : 大数据营销:根据顾客消费习惯性、所在位置、消费时间开展强烈推荐。B : 风险防控:根据顾客消费和现金流量出示资信评级或股权融资适用,运用顾客社交媒体个人行为纪录透支卡风控。


三、电子商务


电商数据比较集中,信息量大,类型较多,未来运用大数据将有大量的空间,包含分折潮流趋势,消费发展趋势、地区消费特性、顾客消费习惯性、各种各样消费者行为的相关性、消费市场、危害消费的关键要素等。


四、医疗器械行业


医疗器械行业有着很多的病案,病理报告,痊愈计划方案,药品汇报这些。在将来,凭借数据管理平台人们能够 搜集不一样病案和医治计划方案,及其患者的本质特征,能够 创建对于病症特性的数据库查询。


五、零售业


零售业大数据的应用有两个方面,一方面是零售业能够掌握顾客消费爱好和发展趋势,开展货品的大数据营销,减少营销推广成本费。另一个方面是根据顾客选购商品,为顾客出示将会选购的其他商品,扩张销售总额,也归属于大数据营销层面。