① 马云做大数据怎么赚钱

随着大数据时代的来临,大数据早已不再神秘。带给我们众多的冲击,每个人都应当与时俱进、不断提升,放弃残缺的守旧思想,大胆接受新的挑战。
任何一家有EXCEL表格的公司,都敢说自己是大数据公司;任何一个地方政府公开有数字的PDF文档,就敢说是政府大数据公开。以至于业界人士担忧,某天大家再听这个概念都麻木了,然而行业还是没有做出多少事情。
区域数字鸿沟巨大
说起掘金大数据,一定绕不开政府数据。地方政府掌握着80%以上的数据。每隔一段时间,从中央到地方,都会发布关于大数据开放的政策。高层谈新经济,言必称大数据。
而在执行层面,目前地方政府大多处于观望状态。关注政务数据领域的清华大学数据科学研究院执行副院长韩亦舜表示,政府数据开放并没有那么复杂,需要有地方能真正去实践和摸索,做一些事情,当下所有的人都在谈数据开放,但做实事的不多。
韩亦舜曾建议西部一些地方政府借大数据发展的机会,率先开放数据获得先发优势,另外同步做好信息化补课。
6月份,笔者见到一位来北京寻求合作的西部省份地理信息测绘局局长,他长期在部委工作,前些年调到地方当部门一把手,发展大数据思路清晰,不过让他苦恼的是,当地信息化水平不高,很多地方没有数据,有的数据还在纸上。
他酝酿出台一个规定,以后所有的图都不准画在纸上,必须上网,以电子化的形式存储。当下他最想解决的问题是信息化,先收取数据,然后通过建立地方数据中心的形式,与企业合作,做地理信息垂直领域的数据开放和挖掘。
走在前沿的贵州省,希望以发展大数据弯道超车,实现新经济的腾飞。然而从数据开放的程度来看,当地一些职能部门,所谓的公开数据还停留在提供PDF文件阶段,远非结构化的数据,按照国际数据公开标准来说,并不能算政府数据公开。
单从数据开放来看,思路最清晰规划更具体的,还是广东、上海等发达地区。对于地方政府的大数据园区来说,发达地区好比“富二代”,一出生就含着金汤匙,但大部分地区还是“穷二代”,需要更大力度的数据挖掘与开放。由于各地在大数据方面存在差距,不同区域的数字鸿沟会继续深化。
饥渴的大数据创业公司
在掘金大数据的背景下,企业早已经等不及了。早些年,部分企业通过各种交易手段,获得政府数据。在数据开放的背景下,部分企业还在依托不规范交易,已经有政府部门被巡视组查出了因数据交易衍生腐败。
一部分企业希望参与政府数据公开进程,帮助政府做数据公开。比如数据堂公司与贵阳市政府共建数据生态城市。还有一批公司,则是急速扩张,跟各地政府成立相关的合资公司。
当然,还有转型大数据二次创业的公司。在贵阳数博会上,笔者见到很多大数据公司,就是以前卖电脑和软件开发的IT公司,转型做大数据,业务范围无所不在,包括智慧城市、软件开发、智慧农业、医疗等。
除上述归类外,企业为了获取政府数据,采取各种“曲线救国”的招式。前不久,笔者熟悉的一家南方大数据创业公司,为了获取某西部城市政府部门数据,报名参加当地的创业大赛,希望通过得奖,引起当地政府重视,达成数据合作。
这家公司的CEO在参赛间隙,拖着行李箱与当地国企联络,希望能够以合资的形式成立公司,共同挖掘当地数据。
这位CEO还通过各种方式,找到该市分管大数据的负责人,希望能够谈成合作。他勾画的蓝图很美好:获取一个城市的数据,做成样板,然后在全国复制,迅速从0到1成为该行业的“寡头”企业。
不过,目前还没有关于这家公司取得实质进展的消息,但这家公司寻求政府大数据开放的决心和路径,颇具有典型性。
政府资源导向,仍是目前很多数据公司努力的方向。很多大数据公司在融资过程中,强调一定要有国有资本进入,而且坚决远离境外资本。
从2015年国内最大的几笔大数据创业公司的融资情况来看,几乎都有国有资本进入,即便只占很小的比重。在某大数据公司融资发布会上,笔者随机问了几家投资机构选择投资这家公司的原因,答案惊人一致:有政府数据资源。
而在一些专家和专业投资人看来,从价值投资的角度,一是真正有技术优势的公司,二是有自己数据源的公司。依托政府资源的公司,从长远来说,并没有太大的投资价值。
乐观者认为,政府数据开放最终会走向规范化,有科技含量的公司最终会在泡沫破灭后存活下来。
BAT能否领军?
BAT中的某一家,会成为全球最大的数据公司么?
在专业人士看来,媒体喜欢造概念,这个说法很不专业。因为数据就像石油一样,每个地理区间都有,谁储存了多少,很难量化和比较。
马化腾和张小龙都说,他们很焦虑,因为用户花在微信上的时间太多了。不过马化腾又说,微信公众号是腾讯前三年最伟大的发明,因为可以把人留在微信上,大家就离不开了。
BAT三家公司一方面通过自身的数据,做出反映数字中国的图谱,甚至把脉经济走向;另外也在建立自身的数据生态体系;以网络为代表,则认为大数据的最终应用是人工智能
京东CTO张晨告诉笔者,因为京东有自己的物流体系,其电商数据包括详细的消费者画像。张晨说,如果通过电商大数据分析,提高精准服务水平,能提高销售一个百分点,对京东来说都是很大的大数据价值变现。
互联网企业的数据,在整个大数据生态中,能够起到多大作用,各方都在摸索。很多人认为,互联网企业的数据价值被高估了。
比如韩亦舜认为,相对实体经济来说,互联网企业的数据,更多是第三产业,是对消费者端的,相对整个实体经济,比如说制造业体系产生的数据,互联网数据并不算多。
“互联网只是个工具。”国家统计局一位原副局长在一次数据研讨会上直言。他认为,互联网是传递现代数据的工具,不能唱得比实体经济还高。
至于BAT如何从大数据掘金,笔者聊了很多业内人,听得都不太明白,仍不得解。一家企业CEO表示,现在大家的思路其实都不清晰。
6月份,马云在一次活动上说,阿里是一家大数据公司,不过我们也不知道怎么用数据挣钱。

② 马云说什么是大数据,什么是云计算

最早提出“大数据”时代到来的是全球知名咨询公司麦肯锡,麦肯锡称:“数据,已经渗透到当今每一个行业和业务职能领域,成为重要的生产因素。人们对于海量数据的挖掘和运用,预示着新一波生产率增长和消费者盈余浪潮的到来。” “大数据”在物理学、生物学、环境生态学等领域以及军事、金融、通讯等行业存在已有时日,却因为近年来互联网和信息行业的发展而引起人们关注。大数据作为云计算、物联网之后IT行业又一大颠覆性的技术革命。云计算主要为数据资产提供了保管、访问的场所和渠道,而数据才是真正有价值的资产。企业内部的经营交易信息、互联网世界中的商品物流信息,互联网世界中的人与人交互信息、位置信息等,其数量将远远超越现有企业IT架构和基础设施的承载能力,实时性要求也将大大超越现有的计算能力。如何盘活这些数据资产,使其为国家治理、企业决策乃至个人生活服务,是大数据的核心议题,也是云计算内在的灵魂和必然的升级方向
大数据搭着信息时代的快车来到了我们的面前,数据的价值逐渐为人们所重视,同时也让数据分析师的身价倍增。而随着大数据分析工具等大数据应用技术的出现,未来的数据分析师又将遇到怎样的挑战和机遇呢?
工具抢了人的饭碗?
很多大数据分析工具的设计起点非常高,定位了数据分析过程中所需要的大部分功能。很多工具的功能涵盖了从数据前期整合、收集到挖掘、分析乃至末端的数据可视化的整个数据分析过程,功能不可谓不强大。
但如果仅凭这些就认定大数据分析工具能取代数据分析师,未免有些杞人忧天了。恰恰相反,大数据分析工具不是数据分析师的竞争者,而是协助者。工具本来就是为人服务的,数据分析师的专业素养让其能很好的发挥大数据分析工具的性能,二者相辅相成,是友非敌。
企业的支持
虽然大数据的概念已经普及,但是很多企业还是留存有一些传统的观念。很多企业虽然重金聘用了数据分析师甚至是组建了数据分析师团队,但是却并没有建立完善的数据价值体系。对数据分析工作缺乏理解与支持。
相对于数据管理,数据分析工的工作重心还应该放在“挖掘数据价值”上。企业与数据分析师直接缺少职能的沟通,将直接影响企业对数据分析师工作性质的定位;同时,企业应该建立数据库并部署大数据分析工具,为了能更好地对接用户,也为企业和数据分析师留有足够的空间。
从幕后到台前的转变
以往的业务人员经常要磨破嘴皮才能得到别人的认同,而现在许多企业正在考虑让数据分析师带着数据分析结果去谈业务。打算以“让数据说话,以数据服人”去赢得客户的信任。而主要的实施过程,是靠数据可视化技术来实现的。
数据可视化技术让数据能以图表和视频的方式直观地展示在人们面前,而数据分析师作为数据的管理者和挖掘者,是最适合不过的讲解人了。这样就要求数据分析师不仅要有扎实的数据分析能力,还要能提取数据精髓,并将之演讲出来以获得他人的认同。从幕后转到台前,这里面会需要许多技能,数据分析师的工作性质也将发生改变。
在大数据时代,数据分析师所扮演的角色不可能是一成不变的。而只有顺应时代的潮流,响应时代的需要,数据分析师这个行业才能继续生存并发展。其实,大数据分析工具,数据可视化这些技术的出现固然使行业受到了影响与挑战,但对于数据分析师来说,未尝不是一次摆脱传统束缚的机遇!

③ 马云,大数据时代,什么是重新定义

您好,看你选择什么行业了,我先说说大数据概念包含几个方面的内内涵吧 1. 数据量大,容TB,PB,乃至EB等数据量的数据需要分析处理。 2. 要求快速响应,市场变化快,要求能及时快速的响应变化,那对数据的分析也要快速,在性能上有更高要求,所以数据量显得对速度要求有些“大”。 3. 数据多样性:不同的数据源,非结构化数据越来越多,需要进行清洗,整理,筛选等操作,变为结构数据。 4. 价值密度低,由于数据采集的不及时,数据样本不全面,数据可能不连续等等,数据可能会失真,但当数据量达到一定规模,可以通过更多的数据达到更真实全面的反馈。 很多行业都会有大数据需求,譬如电信行业,互联网行业等等容易产生大量数据的行业,很多传统行业,譬如医药,教育,采矿,电力等等任何行业,都会有大数据需求。 随着业务的不断扩张和历史数据的不断增加,数据量的增长是持续的。 如果需要分析大数据,则可以Hadoop等开源大数据项目,或Yonghong Z-Suite等商业大数据BI工具。 随着互联网和移动的快速发展,大数据在各个领域不断增加应用。也越来越面向个人大数据应用。

④ 马云说的大数据指什么

信息时代高科技时代

⑤ 马云的大数据是什么意思

所谓大数据就是跟踪记录和观察用户所有数字化的信息,譬如搜索习回惯,譬如购买偏好从而观答察整个用户群体的数据走势和分析单个用户的使用行为,当数据形成期过了之后,那么可以通过积累下来的信息得出各种各样的结论,甚至包括医学范畴,这就是大数据。

⑥ 马云布局的大数据有多牛

你好:阿里在09年就来把大数据作为一项自公司基本战略,要知道那个时候甚至还没几个人开始谈论“大数据”,可以说在大数据方面相比于国内其他互联网公司,阿里是走在前面的。
按马云的话讲,我们正从information technology转向data technology。数据是灵魂。也许并不能保证大数据能给阿里巴巴赚很多钱,但是阿里认为数据对人类有用,所以他们做了。
举一个阿里CTO认为大数据应用和价值的例子:淘宝小贷团队,很小的队伍,完全依赖数据对客户的信用程度作分析,将数据转化为信用,将信用转化为财富,这是传统商业银行冗杂的审核程序,低效和高成本所不能比的。更重要的是,这个项目给近百万的小商户提供了生命线,哪怕只贷一元钱。没有哪个银行会这么做。大数据应该是未来发展的方向。

⑦ 马云的大数据,有多么可怕

一切有利有弊
只能看如何利用
只要用在好处
为大家服务就是好的

⑧ 马云说:下一波超过我的一定在大健康行业,但必须是大数据来撬动大健康才是真正意义上的大健康

实际上马云说的意思就是说,人们将会越来越重视自己的健康。而且这个健康行为必须和互联网大数据相连接。

⑨ 马云究竟掌握哪些大数据

所谓大数据就是跟踪记录和观察用户所有数字化的信息,譬如搜索习惯,譬如购买偏好从而观察整个用户群体的数据走势和分析单个用户的使用行为,当数据形成期过了之后,那么可以通过积累下来的信息得出各种各样的结论,甚至包括医学范畴。
例如:(仅仅是个例子哈,自行理解)经过相当长一段时间(甚至是100年,1000年)的观察,得出一个结论,每次流感大规模爆发之前一周,用户都会大量购买自行车和蓝色外套。那么如果这个月的某一天,突然观察真的有大批量用户购买自行车和蓝色外套,那么就可以预测,一周之后可能会发生流感。(注意是可能哦)。虽然无法解释二者之间有什么必然的联系,但是,结论已经通过大数据得到了~而且大数据的容错度非常非常高,也就是说,它看的不是个体的数据,而是只要整理上的数据得出结论~