大数据,数据挖掘在交通领域有哪些应用

交通领域大数据分析和应用的场景会相当多,这里面要注意两点,一个是大数据本身的技术处理平台,一个是数据分析和挖掘算法。具体场景当时写过点内容,如下:
对于公交线路规划和设计是一个大数据潜在的应用场景,传统的公交线路规划往往需要在前期投入大量的人力进行OD调查和数据收集。特别是在公交卡普及后可以看到,对于OD流量数据完全可以从公交一卡通中采集到相关的交通流量和流向数据,包括同一张卡每天的行走路线和换乘次数等详细信息。对于一个上千万人口的大城市而言,每天的流量数据都会相当大,单一分析一天的数据可能没有相关的价值,而分析一个周期的数据趋势变化则会相当有价值。结合交通流量流向数据趋势变化,可以很好的帮助公交部门进行公交运营线路的调整,换乘站的设计等很多内容。这个方法可能很早就有人想到,但是在公交卡没有普及或海量数据处理和计算能力没有跟上的时候确实很难实际落地操作,而现在则是完全可以落地操作的时候了。
从单一的公交流量流向数据动态分析仅仅是一个方面,大数据往往更加强调相关性分析。比如对于在某一个时间段内公交流量和流向数据发生明细的趋势变化的时候,这个趋势变化的究竟和哪些潜在的大事件或其它影响因素的变化存在相关性,如何去分析这些相关性并做出正确的应对。举个简单的例子来说,当市中心区内的房屋租金持续增长的时候一定会影响到交通流的变化,很多人可能会搬离到更远的地方去居住,自然会形成更多的新增公交流量和流向信息。在《大数据时代》里面谈到更多的会关心相关性而不是因果只是一个方面的内容,实际上往往探索因果仍然很重要,就拿尿片和啤酒的例子来说看起来很简单,但是究竟是谁发现了这种相关性才更加重要,发现相关性的过程往往是从果寻因的过程,否则你也很难真正就确定是具备相关性。
其次就智能交通来说,现在的智慧交通应用往往已经能够很方面的进行整个大城市环境下的交通状况监控并发布相应的道路状况信息。在GPS导航中往往也可以实时的看到相应的拥堵路况等信息,而方便驾驶者选择新的路线。但是这仍然是一种事后分析和处理的机制,一个好的智能导航和交通流诱导系统一定是基于大量的实时数据分析为每个车辆给出最好的导航路线,而不是在事后进行处理。对于智能交通中的交通流分配和诱导等模型很复杂,而且面对大量的实时数据采集,根据模型进行实时分分析和计算,给出有价值的结果,这个在原有的信息技术下确实很难解决。随着物联网和车联网,分布式计算,基于大数据的实时流处理等各种技术的不断城市,智能的交通导航和趋势分析预测将逐步成为可能。
还有一个在国外大片中经常能够看到的就是实时的车辆追踪,随着智慧城市的建设,城市里面到处都是摄像头采集数据,当锁定一个车辆后如何根据车辆的特征或车牌号等信息,实时的追踪到车辆的行走路线和位置。这里面往往需要实时的视频数据采集,采集数据的实时分析和比对,给出相应的参考信息和数据。这个个人认为是具有相当大的难度,要知道对于视频流和图像信息的比对和分析往往更加耗费计算资源,需要更长的计算周期,要从城市成千上万个摄像头里面采集数据并进行实时分析完全满足大数据常说的海量数据,异构数据,速度和价值等四个维度的特征。基于车辆能够做到,基于人当然同样也可以做到,希望这类应用能够逐步的出现,至少现在从硬件水平能力和技术基础上已经具备这种大数据应用的能力。
-

Ⅱ 根据 大数据在交通方面可以有哪些应用

交通方面的大数据用的还是比较多的。只是常在人们的身边,人们忽略了而已。典型的就是网络地图工具,那就是利用大数据分析的出来的路况信息。几乎每个人都有用过吧?

Ⅲ 大数据技术在城市交通检测中有哪些常见应用

大数据在交通行业的应用还是比较多的,典型的就是网络地图的工具,当你查询线路的时候内,网络地图容会给你推荐最佳的线路,大城市会给你最不容易堵车的线路,这就是根据大数据分析的结果而得出的,也是最典型的交通行业的大数据了。

Ⅳ 大数据和智慧交通有哪些应用的案例

大数据方面的应用案例

在医疗方面,纽约的mountsinai医院利用数千名患者的数据、历年汇报的流感爆发数据等数据与病毒的变异过程做交叉比对。通过这种工作,科学家和医生可以预测病毒如何传播,以及对抗这些病毒的最佳途径;甚至有可能使用预测分析来判断病毒的传播方式,然后采取行动来限制这一传播。据说这家医院有望在未来阻止流感的发生。

在交通方面,浙江某城市与英特尔合作,安装了1000个数字监控设备,100个智能监测点系统,超过300个检查点的电子警察,和500多个视频监控系统。通过更有效地监测交通和拥堵数据,改善交通流量,减少道路交通事故。

在废物处理方面, 英国曼彻斯特垃圾处理局有一套系统,能够利用数据使得产生的垃圾被尽可能多的再次利用。通过对来自不同地区的卡车进出加工厂时进行称重,能够了解每个地区所产生的垃圾数量。这些数据帮助当局出台了相应的政策,鼓励那些特定的社区更好的垃圾回收和垃圾减量。

在建筑方面, 住房慈善机构hact从400,000座住房中持续不断地收集数据,并进行了各种数据分析。通过数据来发现设计、建造、布局中存在的潜在问题,进而在建造新的楼宇时优化相关的参数,避免这些问题,改进政府保障房的的维修,规划空间合理使用。

智能应用服务,Google提供的大数据分析智能应用包括客户情绪分析、交易风险(欺诈分析)、产品推荐、消息路由、诊断、客户流失预测、法律文案分类、电子邮件内容过滤、政治倾向预测、物种鉴定等多个方面。据称,大数据已经给Google每天带来2300万美元的收入。例如,一些典型应用如下:

(1)基于Map Rece,Google的传统应用包括数据存储、数据分析、日志分析、搜索质量以及其他数据分析应用。

(2)基于Dremel系统, Google推出其强大的数据分析软件和服务 — BigQuery,它也是Google自己使用的互联网检索服务的一部分。Google已经开始销售在线数据分析服务,试图与市场上类似亚马逊网络服务(Amazon Web Services)这样的企业云计算服务竞争。这个服务,能帮助企业用户在数秒内完成万亿字节的扫描。

(3)基于搜索统计算法,Google推出搜索引擎的输写纠错、统计型机器翻译等服务。

(4)Google的趋势图应用。通过用户对于搜索词的关注度,很快的理解社会上的热点是什么。对广告主来说,它的商业价值就是很快的知道现在用户在关心什么,他们应该在什么地方投入一个广告。据此,Google公司也开发了一些大数据产品,如“Brand Lift in Adwords”、“Active GRP”等,以帮助广告客户分析和评估其广告活动的效率。

(5)Google Instant。输入关键词的过程,Google
Instant 会边打边预测可能的搜索结果。

谷歌的大数据平台架构仍在演进中,追去的目标是更大数据集、更快、更准确的分析和计算。这将进一步引领大数据技术发展的方向。

在竞选方面,直到2012年,奥巴马的数据团队对数以千万计的选民邮件进行了大数据挖掘,精确预测出了更可能拥护奥巴马的选民类型,并进行了有针对性的宣传,从而帮助奥巴马成为了美国历史上唯一一位在竞选经费处于劣势下实现连任的总统。只要数据量够大,够及时,挖掘够深刻,就可以洞悉每个选民的投票几率。

在教育方面,"以物联网、云计算等综合技术的成熟为基础,在学生管理数据库中挖掘出有价值的数据,经过过程性和综合性的考虑,找到学生各种行为之间的内在联系,考量背后的逻辑关系,并作出恰当的教学决策。以某集团最新出版的全球少儿美语旗舰课程为例,引入了首款应用于少儿英语学习领域的MyEnglishLab在线学习辅导系统(以下简称MEL),应用大数据技术全程实时分析学生个体和班级整体的学习进度、学情反馈和阶段性成果,从而及时找到问题所在对症下药,实现对学习过程和结果的动态管理。

智慧交通的应用案例

根据ITS114的不完全统计,截至2015年12月31日,包括城市智慧交通和高速公路机电市场的全年千万项目统计规模为182.5亿,其中主要分为四大市场1.交通管控市场千万项目规模为84.24亿。2.智慧交通/智能运输市场千万项目规模为20.33亿。3.高速公路机电市场千万项目规模为75.8亿。4.平安城市千万项目规模为56.6亿。以上四个市场都有着很多的智慧交通方面的应用案例。

具体的在交通管控市场方面, 当前各个省积极构建的交通运行监测与应急指挥系统,还有围绕着视频、图像分析,从而实现在治安、交通、工业制造、汽车、人工智能等等诸多领域的应用亦是智慧交通的典型案例。如深圳榕享的"交通仿真与智能管控机器人"可实时采集视频检测数据与线圈检测数据,将采集的交通流数据、信号配时等数据输入到建立的仿真路网模型中,进行实时的交通系统仿真。通过一体化交通仿真模型,机器人能快速找出路网拥堵点以及分析路网的常发性拥堵点,并对交通流运营状况的演变进行预测和分析。在交通仿真与智能管控机器人平台上,还可对城市的任意交叉口的交通环境进行设置,周边居民可将相关建议"告知"机器人,实时模拟交叉口改良效果,实现全民参与、全民实践、全民创新的交通管理新模式。

智慧交通/运输方面各种“专车”“快车”“拼车”“代驾”平台类和软件数据类的实例比比皆是,如我们都熟知的“滴滴快递”“uber"“e代驾”等app应用。

交通工具新型技术案例方面:如无人驾驶、自动驾驶、智能车等等;在2015年12月互联网大会上李彦宏展示的无人车,李书福展现的自动驾驶技术都体现了当前智能交通工具的发展。 更近一点的是,汽车电子标识、ETC、车路协同。2015年的新能源客车市场呈爆发性增长,新能源客车销量达到37363辆,同比增长213.19%,同时2015年国务院印发《新能源公交车推广应用考核办法(试行)》、《电动汽车充电基础设施发展指南》等等政策文件,可预见的是新能源汽车将会造就一个巨大的市场,建立在新能源汽车之上的车联网也将搭上顺风车。

平安城市也有很多已经成型的智慧交通案例。平安城市是基于GIS数字地图技术,高度整合治安监控、智能交通、数字城管、应急指挥等子系统,改变传统的静态管理和单点管理,实现实时、动态的联动管理新模式,实现了整个城市的治安、交通、城管、应急联动等各个职能部门的联动,建立了高效的城市部门联动机制,提高了城市的集成化、智慧化管理水平。根据高清视频监控系统的特点和应用需求,结合当前与今后一定时期内图像监控系统与图像应用系统的发展需要,建设一套先进的平安城市综合应用平台,为指挥调度、调查取证、应急处置、交通管理等多种后台应用提供及时、可靠的视频图像信息,服务于实战。市面上常见的平安城市系统具备的主要功能大部分都有:人脸卡口功能;交通事件检测功能;智能检索功能;道路违法抓拍功能;车辆稽查布控功能;非现场执法;分析研判功能;交通事态监控功能;视频质量检测功能;智能应用管理功能;数据格式及通信功能;远程控制功能;指挥调度功能;勤务管理功能; 设备运行状态监测功能。

Ⅳ 交通大数据可以解决城市拥堵吗

以往针对城市交通拥堵的处理方式,各个城市通常是采用优化市内交通体系、公共交通优先发展等传统的硬件解决方案。这些方式能在一定程度上缓解交通拥堵,但是不能处理一些突发事件导致的拥堵,也不能从根本原因上去避免和解决拥堵。
因此,在既有的交通环境现状下,怎样实现提高通行速度成为城市管理者的新研究课题。城市大数据大脑正是在这种情况下产生的解决方案。以城市交通为例,它的大概思路是,全面监控和采集城市交通的大数据,通过先进的算法自动优化调整交通资源,从而达到提高城市交通通行速度和效率的可能。需要五大系统才能高效运转——超大规模计算平台、数据采集系统、数据交换中心、开放算法平台、数据应用平台。
据悉,在杭州萧山区的部分路段试点中,城市大脑通过智能调节红绿灯,初步将车辆通行速度提升了3%至11%。这相当于把高峰期平均时速提高到21.8-23.5公里,试点的成效还是非常不错的。城市数据大脑的未来还不仅限于现有的5万路视频摄像头。它还将结合手机地图、道路线圈记录的车辆行驶速度和数量,公交车、出租车等运行数据,真正成为城市交通的大数据中心。
城市大脑即可在一个虚拟的数字城市中构建多种算法模型,通过机器学习不断迭代优化,计算出更“聪明”更有效率的方案。这些计算的背后都离不开一个强大的数据中心作为数据计算的支撑。据悉,国内像华为、锐捷都能为交通大数据的数据中心建设提供顶级配置的核心交换机,能够满足国内一线城市的交通大数据数据中心的建设需求,为城市提供强有力的支撑。

Ⅵ 城市交通大数据可视化解决方案

作者 | 网络大数据

如今,城市交通拥堵状况日益严重。虽说智能交通布局在不断地完善,但交通管理仍旧收效甚微。数据独立存储难以融合应用、数据内在规律难寻、数据缺乏深度挖掘等诸多问题,其困难重重,该如何解决呢?不妨看看城市交通大数据可视化解决方案吧!

交通动态看得见,交通管理更简便

“大数据可视化”能够将城市运行核心系统的各项关键数据进行可视化呈现,通过贴合实战,从感官、操作、应用及数据四个维度解决交警个性化需求,构建业务场景深度应用,从而打通数据到决策的最短路径。交通管理者可以根据实战场景,利用各类图表、趋势图、视觉效果将庞杂枯燥的数据展现出来,进而深度挖掘内在数据规律,以此指导决策,助力城市交通健康的发展。

系统架构分明,场景动态清晰

通过前端感知系统,实时获取城市交通动态信息。将各个子系统的数据录入数据可视化平台进行融合、分析后,呈现出不同场景下的交通信息个性化视图,从而为城市交通的管理和调控提供指导依据。

01强大的数据源整合能力

数据接入灵活多变,支持静态数据、API、数据库、本地数据四种数据对接模式,其中数据库类型支持主流的MySQL、Oracle、MPP,满足庞大、繁杂、多样数据的集中汇聚展示,从而实现不单单是海量数据表面的业务处理而是通过清洗杂乱数据,优化数据结构来进行深层次的信息挖掘,发现数据的真正含义。

02丰富的图表组件搭建工具

提供丰富多样化的图表组件工具,支持包括圆饼图、极区图、地图、柱状图等超过1100项效果配置,用户可以根据实际应用需求进行组合使用。通过结合大屏形成的组件搭配展示给人一种视觉冲击,不仅仅是简单的把数字用图表表示,而是帮助用户,发现数据背后的规律。

03多样化的场景模板

数据可视化平台提供多种应用场景模板,合理运用搭配色彩、布局以及组件,解决用户设计难题。简单的修饰即可使用,业务全景一目了然。

04图形化的编辑界面

用户也可以通过友好的图形化编辑模式完成样式编辑和数据配置,创建属于自己的个性化需求模板,并且可以进行分享,无需编程能力就能轻松搭建可视化应用。

数据可视功能强大,应用场景遍地开花

从多个角度进行日常路网运行监测与协调管理、交通警情分析研判、重点人车管理,以满足常态下交通监测监管、应急状态下协同处置指挥调度的需要,满足交通行业各个场景的应用需求。

01交通态势可视化

通过对多项核心交通数据进行分析,实现交通态势评估,辅助交通管理部门依据交通评估结果动态跟踪、监测拥堵状态和预测变化趋势,为交通规划、交通优化的提供量化指标依据。

02设施运维管理

可视化运维基于系统中各种设备的运行状况,能及时直观的反映故障点位信息,包括设备在线情况、完好率以及设备故障类型,帮助运维人员解决问题、提高效率,让运维由繁化简,更加有效的保障智能交通系统的顺畅运行。

03重点车辆管控

通过构建重点车辆管控场景,可以帮助用户直观的了解到区域内所有重点车辆的类型和数量以及发放的通行证数量,实现对嫌疑车辆、布控车辆、涉案车辆、重点车辆等黑名单车辆实时监控告警强化交通管控力度。

04交通事件研判分析

针对历史交通流、交通违法、交通事故等数据进行分析汇总整合、专题化分析,达到科学细化管理目的,为交通管理部门在交通组织、警力部署、设备布设等方面的优化提供决策依据。

以上便是城市交通大数据可视化解决方案的有关介绍。

该方案不仅打通了各交警业务子系统间的数据壁垒,将交通大数据真正的价值发掘出来;更以丰富的视图展示满足了实战应用数据可视化场景需求,交通管理部门可通过清晰可视的交通动态图进行车流管控及警力调度,为城市交通的管理与健康发展带来极大的改善。

Ⅶ 如何将手机信令等大数据应用到城市交通规划实践中

您好,希望以下回答能帮助您
你要把你的问题说清楚才可以呀~否则别人没法帮助你啊!专
在网络提问属页面的顶端都可以看到“我要提问”的提问输入框,可以在提问输入框中输入您的问题,或直接点击“我要提问”进入提问页,在这里您需要描述清楚您的问题,为了更好地得到答案,您也可以对问题进行更详细的描述并悬赏,然后把你疑惑的问题写出来,就可以啦!