大数据开发和数据分析有什么区别

1、技术区别

大数据开发类的岗位对于code能力、工程能力有一定要求,这意味着需要有一定的编程能力,有一定的语言能力,然后就是解决问题的能力。

因为大数据开发会涉及到大量的开源的东西,而开源的东西坑比较多,所以需要能够快速的定位问题解决问题,如果是零基础,适合有一定的开发基础,然后对于新东西能够快速掌握。

如果是大数据分析类的职位,在业务上,需要你对业务能够快速的了解、理解、掌握,通过数据感知业务的变化,通过对数据的分析来做业务的决策。

在技术上需要有一定的数据处理能力,比如一些脚本的使用、sql数据库的查询,execl、sas、r等工具的使用等等。在工具层面上,变动的范围比较少,主要还是业务的理解能力。

2、薪资区别

作为IT类职业中的“大熊猫”,大数据工程师的收入待遇可以说达到了同类的顶级。国内IT、通讯、行业招聘中,有10%都是和大数据相关的,且比例还在上升。

在美国,大数据工程师平均每年薪酬高达17.5万美元。大数据开发工程师在一线城市和大数据发展城市的薪资是比较高的。

大数据分析:大数据分析同样作为高收入技术岗位,薪资也不遑多让,并且,我们可以看到,拥有3-5年技术经验的人才薪资可达到30K以上。

3、数据存储不同

传统的数据分析数据量较小,相对更加容易处理。不需要过多考虑数据的存储问题。而大数据所涉及到的数据具有海量、多样性、高速性以及易变性等特点。因此需要专门的存储工具。

4、数据挖掘的方式不同

传统的数据分析数据一般采用人工挖掘或者收集。而面对大数据人工已经无法实现最终的目标,因此需要跟多的大数据技术实现最终的数据挖掘,例如爬虫。

㈡ 如何统计和分析利用网络大数据

如何统计和分析利用网络大数据?
大数据给互联网带来的是空前的信息大爆炸,它不仅改变了互联网的数据应用模式,还将深深影响着人们的生产生活。深处在大数据时代中,人们认识到大数据已经将数据分析的认识从“向后分析”变成“向前分析”,改变了人们的思维模式,但同时大数据也向我们提出了数据采集、分析和使用等难题。在解决了这些难题的同时,也意味着大数据开始向纵深方向发展。
一、数据统计分析的内涵
近年来,包括互联网、物联网、云计算等信息技术在内的IT通信业迅速发展,数据的快速增长成了许多行业共同面对的严峻挑战和宝贵机遇,因此现代信息社会已经进入了大数据时代。事实上,大数据改变的不只是人们的日常生活和工作模式、企业运作和经营模式,甚至还引起科学研究模式的根本性改变。一般意义上,大数据是指无法在一定时间内用常规机器和软硬件工具对其进行感知、获取、管理、处理和服务的数据集合。网络大数据是指“人、机、物”三元世界在网络空间中彼此交互与融合所产生并在互联网上可获得的大数据。
将数据应用到生活生产中,可以有效地帮助人们或企业对信息作出比较准确的判断,以便采取适当行动。数据分析是组织有目的地收集数据、分析数据,并使之成为信息的过程。也就是指个人或者企业为了解决生活生产中的决策或者营销等问题,运用分析方法对数据进行处理的过程。所谓的数据统计分析,就是运用统计学的方法对数据进行处理。在以往的市场调研工作中,数据统计分析能够帮助我们挖掘出数据中隐藏的信息,但是这种数据的分析是“向后分析”,分析的是已经发生过的事情。而在大数据中,数据的统计分析是“向前分析”,它具有预见性。
二、大数据的分析
1.可视化分析。
数据是结构化的,包括原始数据中的关系数据库,其数据就是半结构化的,譬如我们熟知的文本、图形、图像数据,同时也包括了网络的不同构型的数据。通过对各种数据的分析,就可以清晰的发现不同类型的知识结构和内容,包括反映表征的、带有普遍性的广义型知识;用于反映数据的汇聚模式或根据对象的属性区分其所属类别的特征型知识;差异和极端特例进行描述的差异型知识;反映一个事件和其他事件之间依赖或关联的关联型知识;根据当前历史和当前数据预测未来数据的预测型知识。当前已经出现了许多知识发现的新技术,其中之一就是可视化方法。数据可视化技术有3个鲜明的特点:第一,与用户的交互性强。用户不再是信息传播中的受者,还可以方便地以交互的方式管理和开发数据。第二,数据显示的多维性。在可视化的分析下,数据将每一维的值分类、排序、组合和显示,这样就可以看到表示对象或事件的数据的多个属性或变量。第三,最直观的可视性特点。数据可以用图像、曲线、二维图形、三维体和动画来显示,并可对其模式和相互关系进行可视化分析。
2.数据挖掘算法。
数据挖掘是指数据库中的知识发现,其历史可以追溯到1989年美国底特律市召开的第一届KDD国际学术会议上,而第一届知识发现和数据挖掘(DataMining,DM)国际学术会议是1995年加拿大召开的,会议上将数据库里存放的数据生动地比拟成矿床,从而“数据挖掘”这个名词很快就流传开来。数据挖掘的目的是在杂乱无章的数据库中,从大量数据中找到有用的、合适的数据,并将其隐含的、不为人知的潜在价值的信息揭示出来的过程。事实上,数据挖掘只是整个KDD过程中的一个步骤。
数据挖掘的定义没有统一的说法,其中“数据挖掘是一个从不完整的、不明确的、大量的并且包含噪声的具有很大随机性的实际应用数据中,提取出隐含其中、事先未被人们获知、却潜在有用的知识或模式的过程”是被广泛接受的定义。事实上,该定义中所包含的信息——大量真实的数据源包含着噪声;满足用户的需求的新知识;被理解接受的而且有效运用的知识;挖掘出的知识并不要求适用于所有领域,可以仅支持某个特定的应用发现问题。以上这些特点都表现了它对数据处理的作用,在有效处理海量且无序的数据时,还能够发现隐藏在这些数据中的有用的知识,最终为决策服务。从技术这个角度来说,数据挖掘就是利用一系列相关算法和技术从大量的数据中提取出为人们所需要的信息和知识,隐藏在数据背后的知识,可以以概念、模式、规律和规则等形式呈现出来。
3.预测性分析能力。
预测性分析可以让分析员根据可视化分析和数据挖掘的结果做出一些预测性的判断。大数据分析最终要实现的应用领域之一就是预测性分析,可视化分析和数据挖掘都是前期铺垫工作,只要在大数据中挖掘出信息的特点与联系,就可以建立科学的数据模型,通过模型带入新的数据,从而预测未来的数据。作为数据挖掘的一个子集,内存计算效率驱动预测分析,带来实时分析和洞察力,使实时事务数据流得到更快速的处理。实时事务的数据处理模式能够加强企业对信息的监控,也便于企业的业务管理和信息更新流通。此外,大数据的预测分析能力,能够帮助企业分析未来的数据信息,有效规避风险。在通过大数据的预测性分析之后,无论是个人还是企业,都可以比之前更好地理解和管理大数据。
尽管当前大数据的发展趋势良好,但网络大数据对于存储系统、传输系统和计算系统都提出了很多苛刻的要求,现有的数据中心技术很难满足网络大数据的需求。因此,科学技术的进步与发展对大数据的支持起着重要的作用,大数据的革命需要考虑对IT行业进行革命性的重构。网络大数据平台(包括计算平台、传输平台、存储平台等)是网络大数据技术链条中的瓶颈,特别是网络大数据的高速传输,需要革命性的新技术。此外,既然在大数据时代,任何数据都是有价值的,那么这些有价值的数据就成为了卖点,导致争夺和侵害的发生。事实上,只要有数据,就必然存在安全与隐私的问题。随着大数据时代的到来,网络数据的增多,使得个人数据面临着重大的风险和威胁,因此,网络需要制定更多合理的规定以保证网络环境的安全。

㈢ 国家统计局正研究如何利用大数据 提高统计质量

大数据正成为科博会、京交会上的新热点,而备受企业推崇的大数据也有望在国家统计工作中大显身手。国家统计局局长马建堂近日表示,国家统计局正组织力量研究如何在统计工作中利用大数据。业内分析,统计工作中利用大数据有助于降低调查成本,提高统计的及时性和准确性,可以提高统计质量,减轻外界对于统计数据准确性的质疑,但要想根本解决统计数据的信用危机,还需要改变惟GDP的政绩考核体系。 大数据的挑战 虽然大数据目前没有统一定义,但市场普遍认为,大数据是指无法在可承受的时间范围内用常规软件工具进行捕捉、管理、处理的数据集合。从产业角度,常常把这些数据与采集它们的工具、平台、分析系统一起被称为大数据。 而大数据的应用已经渗透到日常生活中。专家认为,互联网上每时每刻生成了大量交易和价格信息,如淘宝网上许许多多的店主开了许许多多的网店,经营着许许多多各种各样的商品,一个综合性的淘宝价格指数应运而生,虽然商品种类大大少于CPI,但由于实时产生的大量基础信息做基础,会吸引越来越多的人关注,将对政府统计的惟一性乃至权威性产生极大挑战。这也意味着,随着大数据时代的到来,政府统计部门不再是惟一的海量数据拥有者。 统计方式的变革 马建堂此前在全国统计工作会议上强调,大数据时代的来临,对统计数据的生产方式带来了很大的挑战。统计部门要利用海量数据并对其进行标准化处理,发掘这一数据宝库,认真把握好这一促进政府统计改革发展的难得机遇。 据了解,政府统计一般是在普查掌握总体的基础上,对一定规模限额以上的单位全额调查,对以下的单位进行抽样,各级政府统计机构对本地区数据质量各负其责。但符合大数据概念的交易记录,无论是成交额、成交量,还是各类商品的价格,都是作为一个总体存在。 通过利用客观存在的海量数据,能够有效降低调查成本。大数据化的采集方式减少了层层上报环节,有助于提高数据及时性、准确性。同时,通过对海量数据的分析、整理,可以对经济社会运行情况进行多方面印证,更加真实合理。北京方迪经济发展研究院副院长赵燕霞说。 一位业内专家举例称,比如每月公布的社会消费品零售额数据,除了几个基础的分类数据外,还可以对各行业收集的数据具体分析,研究餐饮消费结构、金银珠宝消费与经济关系、日用品消费占比变化等,通过这些可以看出消费趋势性变化,为扩大内需提供重要的数据支撑。 信任危机的化解 国家统计局表现出的利用大数据倾向,除了顺应目前发展趋势外,也被外界认为将有助挽救目前存在的数据信用危机。近年来,工资被增长、CPI被下降、房价被降低、失业率被减少因百姓的切身感受与统计数据之间的差异,以及国家和地方之间GDP数据严重不符,都导致了市场对统计数据的质疑。 统计学专家、中国社科院世界经济与政治研究所世界经济统计分析研究室副主任刘仕国认为,大数据要求数据种类越来越多样化,而且对统计过程透明性也越来越高,从理论上看,这样可以提高统计调查的准确性、透明性,可以消减民众对于统计数据的质疑。 (王晔君)

㈣ 大数据时代 统计学依然是数据分析灵魂

大数据时代 统计学依然是数据分析灵魂
什么是数据?数据(data)在拉丁文里是“已知”的意思,在英文中的一个解释是“一组事实的集合,从中可以分析出结论”。笼统地说,凡是用某种载体记录下来的、能反映自然界和人类社会某种信息的,就可称之为数据。古人“结绳记事”,打了结的绳子就是数据。步入现代社会,信息的种类和数量越来越丰富,载体也越来越多。数字是数据,文字是数据,图像、音频、视频等都是数据。
什么是大数据呢?量的增多,是人们对大数据的第一个认识。随着科技发展,各个领域的数据量都在迅猛增长。有研究发现,近年来,数字数据的数量每3年多就会翻一番。
大数据区别于数据,还在于数据的多样性。正如高德纳咨询公司研究报告指出的,数据的爆炸是三维的、立体的。所谓的三维,除了指数据量快速增大外,还指数据增长速度的加快,以及数据的多样性,即数据的来源、种类不断增加。
从数据到大数据,不仅是量的积累,更是质的飞跃。海量的、不同来源、不同形式、包含不同信息的数据可以容易地被整合、分析,原本孤立的数据变得互相联通。这使得人们通过数据分析,能发现小数据时代很难发现的新知识,创造新的价值。
通过数据来研究规律、发现规律,贯穿了人类社会发展的始终。人类科学发展史上的不少进步都和数据采集分析直接相关,例如现代医学流行病学的开端。伦敦1854年发生了大规模的霍乱,很长时间没有办法控制。一位医师用标点地图的方法研究了当地水井分布和霍乱患者分布之间的关系,发现有一口水井周围,霍乱患病率明显较高,借此找到了霍乱暴发的原因:一口被污染的水井。关闭这口水井之后,霍乱的发病率明显下降。这种方法,充分展示了数据的力量。
本质上说,许多科学活动都是数据挖掘,不是从预先设定好的理论或者原理出发,通过演绎来研究问题,而是从数据本身出发通过归纳来总结规律。近现代以来,随着我们面临的问题变得越来越复杂,通过演绎的方式来研究问题常常变得很困难。这就使得数据归纳的方法变得越来越重要,数据的重要性也越发凸显出来。
大数据是非竞争性资源,有助于政府科学决策、商家精准营销
大数据时代,数据的重要作用更加凸显,许多国家都把大数据提升到国家战略的高度。
政府合理利用大数据,引导决策的将是基于实证的事实,政府会更有预见性、更加负责、更加开放。中国古代治国就已经有重数据的思想,如商鞅提出,“强国知十三数……欲强国,不知国十三数,地虽利,民虽众,国愈弱至削”。大数据时代,循“数”治国将更加有效。小数据时代,政府做决策更多依凭经验和局部数据,难免头痛医头、脚痛医脚。比如,交通堵塞就多修路。大数据时代,政府做决策能够从粗放型转向集约型。路堵了,利用大数据分析,可以得知哪一时间、哪一地段最容易堵,或在这一地段附近多修路,或提前预警引导居民合理安排出行,实现对交通流的最佳配置和控制,改善交通。
对于商家来说,大数据使精准营销成为可能。一个有趣的故事,是沃尔玛超市的“啤酒、尿布”现象。沃尔玛超市分析销售数据时发现,顾客消费单上和尿布一起出现次数最多的商品,竟然是啤酒。跟踪调查后发现,有不少年轻爸爸会在买尿布时,顺便买些啤酒喝。沃尔玛发现这一规律后,搭配促销啤酒、尿布,销量大幅增加。大数据时代,每个人都会“自发地”提供数据。我们的各种行为,如点击网页、使用手机、刷卡消费、观看电视、坐地铁出行、驾驶汽车,都会生成数据并被记录下来,我们的性别、职业、喜好、消费能力等信息,都会被商家从中挖掘出来,以分析商机。
大数据也将使个人受益。从生物学、医学上讲,以前生物学家只是通过对单个或几个基因的操控来观察其对生物体的影响,很难发现整体的关联。现在由于技术的发展,可以分析很多,如遗传信息、全体基因的表达量信息、蛋白质族谱信息、全基因组甲基化信息、表观遗传信息等。同时还有个人健康指标、病历、药物反应等数据。如果真能达成生物学上多维多向数据的有机融合,就能够把个人完整地描述出来,从而实现精准医疗的目的。
大数据时代,审核数据的真实性也有了更有效的手段。大数据的特征之一是多样性,不同来源、不同维度的数据之间存在一定的关联度,可以交叉验证。例如,某地的工业产值虚报了一倍,但用电量和能耗却没有达到相应的规模。这就是数据异常,很容易被系统识别出来。发现异常后,相关部门再进行复核,就能更有针对性地防止、打击数据造假。
数据是一种资源,但数据又跟煤、石油等物质性资源不一样。物质性资源不可再生,你用多了,别人就用少了,因而很难共享。数据可以重复使用、不断产生新的价值。大数据资源的使用是非恶性竞争的,共享的前提下,更能够制造双赢。从另一个角度来说,数据如果不被融合、联系在一起,也不能称之为大数据。
大数据不能被直接拿来使用,统计学依然是数据分析的灵魂
现在社会上有一种流行的说法,认为在大数据时代,“样本=全体”,人们得到的不是抽样数据而是全数据,因而只需要简单地数一数就可以下结论了,复杂的统计学方法可以不再需要了。
在我看来,这种观点非常错误。首先,大数据告知信息但不解释信息。打个比方说,大数据是“原油”而不是“汽油”,不能被直接拿来使用。就像股票市场,即使把所有的数据都公布出来,不懂的人依然不知道数据代表的信息。大数据时代,统计学依然是数据分析的灵魂。正如加州大学伯克利分校迈克尔·乔丹教授指出的,“没有系统的数据科学作为指导的大数据研究,就如同不利用工程科学的知识来建造桥梁,很多桥梁可能会坍塌,并带来严重的后果。”
其次,全数据的概念本身很难经得起推敲。全数据,顾名思义就是全部数据。这在某些特定的场合对于某些特定的问题确实可能实现。比如,要比较清华、北大两校同学数学能力整体上哪个更强,可以收集到两校同学高考时的数学成绩作为研究的数据对象。从某种意义上说,这是全数据。但是,并不是说我们有了这个全数据就能很好地回答问题。
一方面,这个数据虽然是全数据,但仍然具有不确定性。入校时的数学成绩并不一定完全代表学生的数学能力。假如让所有同学重新参加一次高考,几乎每个同学都会有一个新的成绩。分别用这两组全数据去做分析,结论就可能发生变化。另一方面,事物在不断地发展和变化,同学入校时的成绩并不能够代表现在的能力。全体同学的高考成绩数据,仅对于那次考试而言是全数据。“全”是有边界的,超出了边界就不再是全知全能了。事物的发展充满了不确定性,而统计学,既研究如何从数据中把信息和规律提取出来,找出最优化的方案;也研究如何把数据当中的不确定性量化出来。
所以说,在大数据时代,数据分析的很多根本性问题和小数据时代并没有本质区别。当然,大数据的特点,确实对数据分析提出了全新挑战。例如,许多传统统计方法应用到大数据上,巨大计算量和存储量往往使其难以承受;对结构复杂、来源多样的数据,如何建立有效的统计学模型也需要新的探索和尝试。对于新时代的数据科学而言,这些挑战也同时意味着巨大的机遇,有可能会产生新的思想、方法和技术。

㈤ 大数据和数据大集中有什么区别和联系

大数据实质是数据量到了一定程度,怎么获取、处理和分析的事情。其他问题比如数据中心怎么建设、是否采用数据大集中的形式可以说和大数据的实质关系不大。大数据使用的数据可以是集中的一处拿来的,更可能是分布在多地或者一地的多处的。
数据大集中是一种建设模式。意思主要是不搞分级分地区的部署,而把数据中心统一在一处。比如银行的中国南北两大数据中心、税务部门的大集中建设,这样数据库在物理上是位于一处汇总的(当然为了数据安全,可有异地备份),对银行和税务等部门来说,便于提取和统计,特别是便于总行总局之类的上级部门直接拿到各地业务数据。
所以我的感觉是,两者关系不大。主要看业务类型和上级要求吧。特别需要统一汇总和管理数据的,或者运维力量集中保障高可用高安全的,采用数据大集中适合。大数据,只有能获取和挖掘数据,随意怎么玩。当然,如果数据是集中存放的话,更方便大数据平台拿和用。

㈥ 大数据、数据分析和数据挖掘的区别是什么

  • 区别:大数据是互联网的海量数据挖掘,而数据挖掘更多是针对内部企业行业小众化的数据挖掘,数据分析就是进行做出针对性的分析和诊断,大数据需要分析的是趋势和发展,数据挖掘主要发现的是问题和诊断。

㈦ 数据分析和大数据平台网站有哪些

无需编程即可用来数据分析的工具/软件,推荐几个:
Excel / Spreadsheet:http://www.openoffice.org/download/
Trifacta:https://www.trifacta.com/start-wrangling/
Rapid Miner:https://rapidminer.com/
Rattle GUI:https://cran.r-project.org/bin/windows/base/
Orange:http://orange.biolab.si/
Tableau Public:https://public.tableau.com/s/
Talend:http://openrefine.org/download.html

㈧ 大数据,政府统计的机遇与挑战

大数据,政府统计的机遇与挑战
对于政府统计机构来说,没有什么比数据更重要的了。我们研究统计分类标准、统计调查方法、统计数据采集方式、统计数据加工处理方法、统计数据评估技术,都是为了获取真实准确、完整及时、代表性强、分类科学、经济适用的统计数据。
大数据时代的到来,既给政府统计带来重大发展机遇,也带来严峻挑战。
一、大数据在政府统计中的应用
国家统计局高度重视大数据在政府统计中的应用。到目前为止,已经与17家大数据企业签订了战略合作协议。当然,目前大数据在中国政府统计中的应用仍处于起步阶段,主要表现在两个方面:一是大数据成为政府统计数据的部分资料来源;二是大数据成为政府统计数据质量的部分评估依据。
(一)大数据成为政府统计数据的部分资料来源
目前,大数据已经成为中国政府统计数据的部分资料来源,以下是几个有代表性的方面:
1.利用重点网上零售交易平台数据测算网上零售额
为了掌握网上零售交易平台的交易规模和结构,综合测算网上零售数据,从今年1月份开始,国家统计局实施了月度网上零售交易平台调查,调查范围为42家重点网上零售交易平台,包括京东商城、亚马逊、当当网、淘宝网、天猫商城、酒仙网、美团网、中粮我买网、国美在线、大众点评网等。据对上述42家重点网上零售交易平台数据测算,今年1~8月份,全国网上零售额22400.9亿元,同比增长36.5%。其中,实物商品网上零售额18653.4亿元,增长35.6%,占全部网上零售额的83.3%;非实物商品网上零售额3747.5亿元,增长41.1%,占全部网上零售额的16.7%。这对于宏观管理部门和社会公众了解网上零售情况具有重要的参考作用。
2.利用房屋交易网签数据计算全国70个大中城市的新建住宅价格指数
房屋交易网签数据是指买卖双方签订购房合同后,房地产开发企业在房管部门进行备案,并在房产信息网上公布的相关信息,包含地址、楼层、价格、面积和金额等详细信息,基本涵盖了当月新建住宅的全部交易情况。从2011年1月份开始,国家统计局开始采用房屋交易网签数据计算全国70个大中城市的新建住宅价格指数。这对于提高70个大中城市新建住宅价格指数的数据质量起到了重要作用。
3.利用卓创资讯公司提供的价格信息,开展流通领域重要生产资料市场价格监测
国家统计局与卓创资讯公司开展合作,利用该企业提供的价格信息,开展流通领域重要生产资料市场价格监测。从2014年1月开始,按旬共同向社会发布流通领域9大类50种重要生产资料市场价格的检测结果。行业涵盖黑色金属、有色金属、化工产品、煤炭、石油天然气、非金属建材、农产品、农业生产资料、林产品等领域。地区监测范围覆盖北京、天津、河北、山西、内蒙古、辽宁、吉林、上海等24个省区市。这对于宏观管理部门和社会公众了解流通领域重要生产资料市场价格信息起到了重要作用。
(二)大数据成为政府统计数据质量的部分评估依据
国家统计局除了把大数据作为政府统计数据的部分资料来源外,也高度重视利用大数据评估政府统计数据质量。以下是目前比较有代表性的两个方面:一是利用中国银联跨行银行卡消费数据评估社会消费品零售总额数据质量;二是利用大型机械装备企业物联网数据评估固定资产投资数据质量。
二、大数据给政府统计带来的机遇与挑战
对于政府统计来说,大数据既带来了重大发展机遇,也带来严峻挑战。
(一)大数据给政府统计带来重大发展机遇
首先,大数据将不断提高政府统计服务宏观管理和社会公众的能力。随着大数据的不断发展和完善,随着政府统计机构开发应用大数据能力的不断提升,政府统计产品的种类将会不断丰富,政府统计数据的质量和时效性将会不断提升,从而政府统计服务宏观管理和社会公众的能力会不断提高。
其次,大数据将会推动政府统计发生革命性的变化。随着大数据的发展和完善,随着政府统计机构开发应用大数据技术的逐步成熟,政府统计将会发生革命性变化。一是现有的以周期性普查为基础,以抽样调查为主体,综合运用全面调查、重点调查等方法,并充分利用行政记录等资料的统计调查方法体系可能会发生重大变化。长期以来,抽样调查方法,即在总体中抽选样本、利用样本推算总体的方法;普查和全面调查方法,即对总体中所有单位逐一进行调查的方法,在我国政府统计中发挥了重要作用。今后,在较长的时期内这些方法仍然会被政府统计所广泛采用。但在大数据不断发展和完善的情况下,某些领域、某些方面的大数据可能会取代抽样调查、普查和全面调查方法,成为获取统计数据的重要方法,而且这种获取统计数据的方法将会变得越来越重要。二是政府统计中的数据采集方式可能会发生重大变化。长期以来,政府统计机构主要以企业填报、住户记账、调查员入户等方式采集原始数据。在大数据不断发展和完善的情况下,一部分原始数据将通过挖掘大数据的方式获取,而且这种新的数据采集方式将会变得越来越重要。三是政府统计的数据处理模式可能会发生重大变化。在大数据不断发展和完善的情况下,现行的对普查和全面调查数据进行直接审核、汇总、加工处理和对抽样调查数据进行推算放大的数据处理模式可能会发生重大变化。
(二)大数据给政府统计带来严峻挑战
首先,大数据对政府统计能力带来挑战。从大数据本身的产生到发展完善,从政府统计对大数据的初步运用到成熟运用,需要一个较长的时期。在这个过程中,一方面,政府统计中传统的统计调查方法、数据采集方式和数据处理模式将继续运行,否则满足不了宏观管理和社会公众的需求。另一方面,政府统计系统必须投入大量的人力和物力对大数据进行挖掘、加工处理和运用,否则也适应不了大数据时代宏观管理和社会公众的需求。这种双轨运行的模式,对政府统计能力将是一个巨大的挑战。
其次,大数据对传统政府统计理念带来挑战。传统的政府统计有一个约定俗成的理念:抽样调查方法可降低调查成本,提高效率和数据质量。因为抽样调查只对总体中部分抽中的样本进行调查,并非对总体中的每一个单位都进行调查,所以调查单位明显减少,可降低成本,节约时间,提高效率。同时,由于调查单位较少,政府统计机构有能力对基层统计调查人员进行较为扎实的培训和指导,有精力对统计调查数据进行较为严格的检查和审核,从而能够提高统计调查数据质量。随着大数据不断发展完善,政府统计机构将会越来越多地通过大数据企业间接地获取统计数据,不需要对总体中的具体单位进行直接调查,不需要调查员,从而也不需要对调查员进行培训,抽样调查所具有的调查成本低、能够提高统计调查数据质量的优点就不复存在了。

㈨ 什么是大数据 大数据是什么意思

大数据是来一种规模大到在获取、源存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。

从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘。但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。


(9)大数据统计局扩展阅读

大数据的价值体现在以三方面:

1、对大量消费者提供产品或服务的企业可以利用大数据进行精准营销;

2、做小而美模式的中小微企业可以利用大数据做服务转型;

3、面临互联网压力之下必须转型的传统企业需要与时俱进充分利用大数据的价值。