大数据匹配算法
❶ 求一种大数据分析的算法
//群体数据的排序与查找 //1.直接插入排序的算法实现: void InsertSort(int arrForSort[],int nLength) { int i,j,temp; for(i=1;i/遍历整个序列 { temp=arrForSort[i]; for(j=i;j>0&&temp<arrForSort[j-1];j--) //将第i个元素插入到合适的位置 arrForSort[j]=arrForSort[j-1]; arrForSort[j]=temp; } } //2.直接选择排序的算法实现: void SelectSort(int arrForSort[],int nLength) { int min,temp, i,j; for(i=0;i<nLength-1;i++) { min=i; for(j=i+1;j<nLength;j++) //选出具有最小值的元素的下标标号 if(arrForSort[j]/第i个元素与具有最小值的元素进行交换 arrForSort[i]=arrForSort[min]; arrForSort[min]=temp; } } //3.起泡法排序的算法实现: void BubbleSort(int arrForSort[],int nLength) { int i,j,temp; i=nLength-1; while(i>0) { for(j=0;j<i;j++) //1次起泡的过程 { if(arrForSort[j+1]/逆序交换 {temp=arrForSort[j+1]; arrForSort[j+1]=arrForSort[j]; arrForSort[j]=temp;} } i--; //准备下一次起泡序列的长度 } } //4.希尔排序的算法实现: void ShellSort(int arrForSort[],int nLength) { int k,j,i,temp; k=nLength/2; //设置初始子序列的间隔 while(k>0) { for(j=k;j/子序列的插入排序 { temp=arrForSort[j];i=j-k; while((i>=0)&&(arrForSort[i]>temp)) { arrForSort[i+k]=arrForSort[i];i=i-k; } arrForSort[i+k]=temp; } k=k/2; //重新设置子序列的间隔 } return; } //5.顺序查找的实现 int SequenceSearch(int arrForSearch[],int nLength,int nKey) { int i; for(i=0;i<nLength;i++) //遍历整个序列 if(arrForSearch[i]==nKey) return i; return -1; } //6.折半查找的算法实现 int MiddleSearch(int arrForSearch(int arrForSearch[],int nLength,int nKey) { int mid,top,bottom; bottom=0; //设置首末元素下标 top=nLength-1; while(bottom/取序列中间元素下标 if(arrForSearch[mid]==nKey) return mid; //如果找到该元素,返回其下标 else if(arrForSearch[mid]>nKey) top=mid-1; //在前半个序列中继续查找 else bottom=mid+1; } return -1; }
❷ 大数据常用算法有哪些
made it," sai
❸ 对于大数据开发,需要掌握哪些大数据算法
不管是什么行业的数据分析师,必须要掌握的技能是: 该行业的行业知识和经验,不能低于行业专家的平均水平 必须具有的数学知识,例如统计分析、数理统计、模糊数学、线性代数、建模方法等等 IT技术:数据库技术、大数据技术、离散数学算法。
❹ 数据结构串匹配十大经典算法
1。
int Index(SString S,SString T,int pos)
{
//返回子串T在主串S中第pos个字符之后的位置。若不存在,则函数值为0。
//其中,T非空,1〈=pos<=Stringlength(S).
i=pos;j=1;
while(i<=S[0] && j<=T[0])
{
if (S[i]== T[i]) {++i;++j;}
else { i=i-j+2;j=1;}
}
if(j>T[0]) return i-T[0];
else return 0;
}//Index
2。
int Index-KMP(SString S,SString T,int pos)
{
//利用模式串T的next函数值求T在主串S中第pos 个字符之后的位置的KMP算法。其中,T非空,1<=pos<=Stringlength(S)
i=pos;
j=1;
while(i<=S[0] && j<=T[0])
{
if (j==0 || S[i]==T[j]) {++i; ++j;}
else j=next[j];
}
if (j>T[0]) return i-T[0];
else return 0;
//Index}
下面是next函数:
void next(SString S,ing next[])
{
i=1;
next[1]=0;
j=0;
while (i<T[0])
{
if (j==0 || T[i]==T[j]){ ++i; ++j;
next[j]=i;}
else j=next[j];
}
}//next
我现在只有这两个答案。
❺ 大数据“匹配”室友效果如何
通过性格、习惯等因素匹配室友,无疑是一种相对合理的“次优选择”。当然,大数据“算出”室友,不应是简单的“合并同类项”。室友之间,最好是既有相似,又有互补,如何在实践中不断修正大数据算法,追求“和而不同”的境界,考验着高校的管理智慧。
俗话说,众口难调。宿舍分配没有“最优选择”,任何一种方式都会有人不满意,但通过性格、习惯等因素匹配室友,无疑是一种相对合理的“次优选择”,有助于增进交流,激发潜能,营造良好的学习生活氛围。当然,大数据“算出”室友,不应是简单的“合并同类项”。室友之间,最好是既有相似,又有互补,如何在实践中不断修正大数据算法,追求“和而不同”的境界,考验着高校的管理智慧。
❻ 根据大数据寻找函数关系的算法有哪些
用机器学习中的 支持向量机 之类的应该可以吧? 好像搜索 一下 支持向量机 和 函数拟合 ,有很多结果。 你参考一下,我也不知道多元的行不行。 以前机器学习课,那些逻辑回归 SVM,通过大量数据训练来得到一个最适合的函数,不过都是一元的。你可以找一下这方面的资料看看
-
❼ 统计模型和大数据模型所使用的主要算法有什么异同
以每24小时作为一份时间(而非自然日),根据用户的配置有两种工作模式:带状模式中,用户仅定义开始日期时,从开始日期(含)开始,每份时间1个分片地无限增加下去;环状模式中,用户定义了开始日期和结束日期时,以结束日期(含)和开始日期(含)之间的时间份数作为分片总数(分片数量固定),以类似取模的方式路由到这些分片里。
1. DBLE 启动时,读取用户在 rule.xml 配置的 sBeginDate 来确定起始时间
2. 读取用户在 rule.xml 配置的 sPartionDay 来确定每个 MySQL 分片承载多少天内的数据
3. 读取用户在 rule.xml 配置的 dateFormat 来确定分片索引的日期格式
4. 在 DBLE 的运行过程中,用户访问使用这个算法的表时,WHERE 子句中的分片索引值(字符串),会被提取出来尝试转换成 java 内部的时间类型
5. 然后求分片索引值与起始时间的差,除以 MySQL 分片承载的天数,确定所属分片
1. DBLE 启动时,读取用户在 rule.xml 配置的起始时间 sBeginDate、终止时间 sEndDate 和每个 MySQL 分片承载多少天数据 sPartionDay
2. 根据用户设置,建立起以 sBeginDate 开始,每 sPartionDay 天一个分片,直到 sEndDate 为止的一个环,把分片串联串联起来
3. 读取用户在 rule.xml 配置的 defaultNode
4. 在 DBLE 的运行过程中,用户访问使用这个算法的表时,WHERE 子句中的分片索引值(字符串),会被提取出来尝试转换成 Java 内部的日期类型
5. 然后求分片索引值与起始日期的差:如果分片索引值不早于 sBeginDate(哪怕晚于 sEndDate),就以 MySQL 分片承载的天数为模数,对分片索引值求模得到所属分片;如果分片索引值早于 sBeginDate,就会被放到 defaultNode 分片上
与MyCat的类似分片算法对比
中间件
DBLE
MyCat
分片算法种类 date 分区算法 按日期(天)分片
两种中间件的取模范围分片算法使用上无差别
开发注意点
【分片索引】1. 必须是字符串,而且 java.text.SimpleDateFormat 能基于用户指定的 dateFormat 来转换成 java.util.Date
【分片索引】2. 提供带状模式和环状模式两种模式
【分片索引】3. 带状模式以 sBeginDate(含)起,以 86400000 毫秒(24 小时整)为一份,每 sPartionDay 份为一个分片,理论上分片数量可以无限增长,但是出现 sBeginDate 之前的数据而且没有设定 defaultNode 的话,会路由失败(如果有 defaultNode,则路由至 defaultNode)
【分片索引】4. 环状模式以 86400000 毫秒(24 小时整)为一份,每 sPartionDay 份为一个分片,以 sBeginDate(含)到 sEndDate(含)的时间长度除以单个分片长度得到恒定的分片数量,但是出现 sBeginDate 之前的数据而且没有设定 defaultNode 的话,会路由失败(如果有 defaultNode,则路由至 defaultNode)
【分片索引】5. 无论哪种模式,分片索引字段的格式化字符串 dateFormat 由用户指定
【分片索引】6. 无论哪种模式,划分不是以日历时间为准,无法对应自然月和自然年,且会受闰秒问题影响
运维注意点
【扩容】1. 带状模式中,随着 sBeginDate 之后的数据出现,分片数量的增加无需再平衡
【扩容】2. 带状模式没有自动增添分片的能力,需要运维手工提前增加分片;如果路由策略计算出的分片并不存在时,会导致失败
【扩容】3. 环状模式中,如果新旧 [sBeginDate,sEndDate] 之间有重叠,需要进行部分数据迁移;如果新旧 [sBeginDate,sEndDate] 之间没有重叠,需要数据再平衡
配置注意点
【配置项】1. 在 rule.xml 中,可配置项为 <propertyname="sBeginDate"> 、 <propertyname="sPartionDay"> 、 <propertyname="dateFormat"> 、 <propertyname="sEndDate"> 和 <propertyname="defaultNode">
【配置项】2.在 rule.xml 中配置 <propertyname="dateFormat">,符合 java.text.SimpleDateFormat 规范的字符串,用于告知 DBLE 如何解析sBeginDate和sEndDate
【配置项】3.在 rule.xml 中配置 <propertyname="sBeginDate">,必须是符合 dateFormat 的日期字符串
【配置项】4.在 rule.xml 中配置 <propertyname="sEndDate">,必须是符合 dateFormat 的日期字符串;配置了该项使用的是环状模式,若没有配置该项则使用的是带状模式
【配置项】5.在 rule.xml 中配置 <propertyname="sPartionDay">,非负整数,该分片策略以 86400000 毫秒(24 小时整)作为一份,而 sPartionDay 告诉 DBLE 把每多少份放在同一个分片
【配置项】6.在 rule.xml 中配置 <propertyname="defaultNode"> 标签,非必须配置项,不配置该项的话,用户的分片索引值没落在 mapFile 定义
❽ 需要掌握哪些大数据算法
不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。
1.C4.5
C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法.C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进:
1)用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足;
2)在树构造过程中进行剪枝;
3)能够完成对连续属性的离散化处理;
4)能够对不完整数据进行处理。
C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。
2.Thek-meansalgorithm即K-Means算法
k-meansalgorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k 3.Supportvectormachines
支持向量机,英文为SupportVectorMachine,简称SV机(论文中一般简称SVM)。它是一种监督式学习的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面间的距离或差距越大,分类器的总误差越小。一个极好的指南是C.J.CBurges的《模式识别支持向量机指南》。vanderWalt和Barnard将支持向量机和其他分类器进行了比较。
4.TheApriorialgorithm
Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法。其核心是基于两阶段频集思想的递推算法。该关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于最小支持度的项集称为频繁项集,简称频集。
5.最大期望(EM)算法
在统计计算中,最大期望(EM,Expectation–Maximization)算法是在概率(probabilistic)模型中寻找参数最大似然估计的算法,其中概率模型依赖于无法观测的隐藏变量(LatentVariabl)。最大期望经常用在机器学习和计算机视觉的数据集聚(DataClustering)领域。
6.PageRank
PageRank是Google算法的重要内容。2001年9月被授予美国专利,专利人是Google创始人之一拉里·佩奇(LarryPage)。因此,PageRank里的page不是指网页,而是指佩奇,即这个等级方法是以佩奇来命名的。
PageRank根据网站的外部链接和内部链接的数量和质量俩衡量网站的价值。PageRank背后的概念是,每个到页面的链接都是对该页面的一次投票,被链接的越多,就意味着被其他网站投票越多。这个就是所谓的“链接流行度”——衡量多少人愿意将他们的网站和你的网站挂钩。PageRank这个概念引自学术中一篇论文的被引述的频度——即被别人引述的次数越多,一般判断这篇论文的权威性就越高。
7.AdaBoost
Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器(强分类器)。其算法本身是通过改变数据分布来实现的,它根据每次训练集之中每个样本的分类是否正确,以及上次的总体分类的准确率,来确定每个样本的权值。将修改过权值的新数据集送给下层分类器进行训练,最后将每次训练得到的分类器最后融合起来,作为最后的决策分类器。
8.kNN:k-nearestneighborclassification
K最近邻(k-NearestNeighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。
9.NaiveBayes
在众多的分类模型中,应用最为广泛的两种分类模型是决策树模型(DecisionTreeModel)和朴素贝叶斯模型(NaiveBayesianModel,NBC)。朴素贝叶斯模型发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率。同时,NBC模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单。理论上,NBC模型与其他分类方法相比具有最小的误差率。但是实际上并非总是如此,这是因为NBC模型假设属性之间相互独立,这个假设在实际应用中往往是不成立的,这给NBC模型的正确分类带来了一定影响。在属性个数比较多或者属性之间相关性较大时,NBC模型的分类效率比不上决策树模型。而在属性相关性较小时,NBC模型的性能最为良好。
10.CART:分类与回归树
CART,。在分类树下面有两个关键的思想。第一个是关于递归地划分自变量空间的想法;第二个想法是用验证数据进行剪枝。