大数据曾志云局长
❶ 广东省经济和信息化委员会的人员编制
省经济和信息化委(省国防科学技术工业办公室)机关行政编制205名。
其中厅级领导版职数:主任1名、副权主任5名(含增设1名副主任分管国防科学技术工业工作),省中小企业局局长(兼任省民营经济发展服务局局长)1名、省大数据管理局局长(兼任总经济师)1名;
正处级领导职数32名(含总工程师1名、机关党委专职副书记1名、省中小企业局(省民营经济发展服务局)副局长3名)、副处级领导职数44名。
❷ 苏州市新闻办公室主任什么级别
国务院办公厅秘书长,正部级。乡镇政府(或县某局)办公室主任,股级。中间隔着万重山
根据“办公室”的级别来定的,如果只是一般单位的办公室主任,那就没有级别关于吴琦等同志职务调整的通知
苏府人〔2021〕2号
各市、区人民政府,苏州工业园区、苏州高新区、太仓港口管委会;市各委办局,各直属单位:
经研究决定:
吴琦同志任市政府办公室主任;
范建青同志任市政府副秘书长;
顾建明同志任市政府副秘书长,兼任市大数据管理局局长,免去市政府办公室副主任职务;
李晶同志兼任市大数据管理局副局长;
免去沈志栋同志市政府副秘书长、市政府办公室主任、市政府新闻发言人、兼任的市大数据管理局局长职务。
苏州市人民政府
2021年1月28日
图片
市政府关于李勇、杨芳同志职务任免的通知
苏府人〔2021〕3号
各市、区人民政府,苏州工业园区、苏州高新区、太仓港口管委会;市各委办局,各直属单位:
经研究决定:
李勇同志任市政府新闻办公室主任;
免去杨芳同志市政府新闻办公室主任职务。
苏州市人民政府
2021年1月28日
图片
市政府关于孙勇同志免职的通知
苏府人〔2021〕4号
各市、区人民政府,苏州工业园区、苏州高新区、太仓港口管委会;市各委办局,各直属单位:
经研究决定:
免去孙勇同志市公务员局副局长职务。
苏州市人民政府
2021年1月28日
图片
市政府关于沈玉明同志职务调整的通知
苏府人〔2021〕5号
各市、区人民政府,苏州工业园区、苏州高新区、太仓港口管委会;市各委办局,各直属单位:
经研究决定:
沈玉明同志任市公务员局局长。
苏州市人民政府
2021年1月28日
来源:苏州市人民政府官网
❸ 你对大数据和智慧交通时代如何改进城市交通管理工作有哪些建议
大数据时代的城市交通管理关键要解决数据来源问题,打破现有部门、机构之间因为利益关系而对数据共享和交换的障碍,让公众参与到交通基本状态信息的采集是一个必然有效的途径,只是目前面临各种法律法规的难题,以及网络覆盖导致的速率和交通管理机构没有提供便捷的数据采集上传的入口。
解决了数据采集问题以后,其他的数据分析、决策分析和行政监管等工作,就看管理部门的执行力了。即便没有行政作为的突破,借用商业运作也能对交通管理起到很好的促动作用。
❹ 大数据(Big Data)”一词已经变得没有以往那么红火了,为什么会这样呢
原因在于是在于盲目迷恋数据,不加批判地使用,那会引发灾难。
盲目迷恋数据与误用
“大数据”的问题并不在于数据本身很糟糕,也不在于大数据本身很糟糕:谨慎应用的话,大型数据集还是能够揭示其它途径发现不了的重要趋势。正如茱莉娅·罗斯·韦斯特(Julia Rose West)在最近给Slate撰写的文章里所说的,盲目迷恋数据,不加批判地使用,往往导致灾难的发生。
从本质来看,大数据不容易解读。当你收集数十亿个数据点的时候——一个网站上的点击或者光标位置数据;大型公共空间十字转门的转动次数;对世界各地每个小时的风速观察;推文——任何给定的数据点的来源会变得模糊。这反过来意味着,看似高级别的趋势可能只是数据问题或者方法造成的产物。但也许更重大的问题是,你所拥有的数据通常只是你真正想要知道的东西的一个指标。大数据不能解决那个问题——它反而放大了那个问题。
例如,民意调查被广泛用作衡量人们在选举中的投票意向的指标。然而,从汤姆·布拉德利(Tom Bradley)1982年在加州州长竞选中败北,到英国脱欧公投,再到特朗普的当选,数十年来结果出乎意料的选举一再提醒我们,民意测验和人们实际的投票意向之间并不总是完全一致。Facebook以往主要通过用户有没有点赞来估量他们对特定的帖子是否有兴趣。但随着经过算法优化的动态信息开始大量出现标题诱饵、点赞诱饵和婴儿照片——导致用户满意度明显下降——该公司的高层逐渐意识到,“点赞”这事并不一定意味着用户真的喜欢特定的内容。
指标和你实际上要估量的东西之间的差别越大,过于倚重它就越危险。以来自奥尼尔的著作的前述例子为例:学区使用数学模型来让教师的表现评估与学生的测验分数挂钩。学生测验分数与不在教师控制范围内的无数重要因素有关。大数据的其中一个优势在于,即便是在非常嘈杂的数据集里,你也可以发现有意义的关联性,这主要得益于数据量大以及理论上能够控制混杂变量的强大软件算法。例如,奥尼尔描述的那个模型,利用来自多个学区和体系的学生的众多人口结构方面的相关性,来生成测验分数的“预期”数据集,再拿它们与学生的实际成绩进行比较。(由于这个原因,奥尼尔认为它是“大数据”例子,尽管那个数据集并不够大,没达到该词的一些技术定义的门槛。)
试想一下,这样的系统被应用在同一所学校里面——拿每个年级的教师与其它年级的教师比较。要不是大数据的魔法,学生特定学年异常的测验分数会非常惹眼。任何评估那些测验的聪明人,都不会认为它们能够很好地反映学生的能力,更不用说教他们的老师了。
而前华盛顿特区教育局长李洋姬(Michelle Rhee)实行的系统相比之下更不透明。因为数据集比较大,而不是小,它必须要由第三方的咨询公司利用专门的数学模型来进行分析解读。这可带来一种客观性,但它也排除掉了严密质问任何给定的信息输出,来看看该模型具体如何得出它的结论的可能性。
例如,奥尼尔分析道,有的教师得到低评分,可能不是因为他们的学生表现糟糕,而是因为那些学生之前一年表现得出奇地好——可能因为下面那个年级的教师谎称那些学生表现很好,以提升他自己的教学评分。但对于那种可能性,学校高层并没什么兴趣去深究那种模型的机制来予以证实。
加入更多指标
并不是说学生测验分数、民意调查、内容排名算法或者累犯预测模型统统都需要忽视。除了停用数据和回归到奇闻轶事和直觉判断以外,至少有两种可行的方法来处理数据集和你想要估量或者预计的现实世界结果之间不完全相关带来的问题。
其中一种方法是加入更多的指标数据。Facebook采用这种做法已有很长一段时间。在了解到用户点赞不能完全反映他们在动态消息当中实际想要看到的东西以后,该公司给它的模型加入了更多的指标。它开始测量其它的东西,比如用户看一篇帖子的时长,他们浏览其点击的文章的时间,他们是在看内容之前还是之后点赞。Facebook的工程师尽可能地去权衡和优化那些指标,但他们发现用户大体上还是对动态消息里呈现的内容不满意。因此,该公司进一步增加测量指标:它开始展开大范围的用户调查,增加新的反应表情让用户可以传达更加细微的感受,并开始利用AI来按页面和按出版者检测帖子的标题党语言。该社交网络知道这些指标没有一个是完美的。但是,通过增加更多的指标,它理论上能够更加接近于形成可给用户展示他们最想要看到的帖子的算法。
这种做法的一个弊端在于,它难度大,成本高昂。另一个弊端在于,你的模型加入的变量越多,它的方法就会变得越错综复杂,越不透明,越难以理解。这是帕斯夸里在《黑箱社会》里阐述的问题的一部分。算法再先进,所利用的数据集再好,它也有可能会出错——而它出错的时候,诊断问题几无可能。“过度拟合”和盲目相信也会带来危险:你的模型越先进,它看上去与你过往所有的观察越吻合,你对它越有信心,它最终让你一败涂地的危险就越大。(想想次贷危机、选举预测模型和Zynga吧。)
❺ 南京市大数据管理局属于副厅级还是正处级
南京市大数据管理局属于市政府直属机构,应该属于正局级建制,其实换算成国标就是副厅级,但里面各处室也是正处级建制。。。
❻ 盐城市大数据办公室主陆晓刚属于什么行政级别
大数据(来big data),指无法在一源定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性),平台有hadoop
❼ 马云做大数据怎么赚钱
随着大数据时代的来临,大数据早已不再神秘。带给我们众多的冲击,每个人都应当与时俱进、不断提升,放弃残缺的守旧思想,大胆接受新的挑战。
任何一家有EXCEL表格的公司,都敢说自己是大数据公司;任何一个地方政府公开有数字的PDF文档,就敢说是政府大数据公开。以至于业界人士担忧,某天大家再听这个概念都麻木了,然而行业还是没有做出多少事情。
区域数字鸿沟巨大
说起掘金大数据,一定绕不开政府数据。地方政府掌握着80%以上的数据。每隔一段时间,从中央到地方,都会发布关于大数据开放的政策。高层谈新经济,言必称大数据。
而在执行层面,目前地方政府大多处于观望状态。关注政务数据领域的清华大学数据科学研究院执行副院长韩亦舜表示,政府数据开放并没有那么复杂,需要有地方能真正去实践和摸索,做一些事情,当下所有的人都在谈数据开放,但做实事的不多。
韩亦舜曾建议西部一些地方政府借大数据发展的机会,率先开放数据获得先发优势,另外同步做好信息化补课。
6月份,笔者见到一位来北京寻求合作的西部省份地理信息测绘局局长,他长期在部委工作,前些年调到地方当部门一把手,发展大数据思路清晰,不过让他苦恼的是,当地信息化水平不高,很多地方没有数据,有的数据还在纸上。
他酝酿出台一个规定,以后所有的图都不准画在纸上,必须上网,以电子化的形式存储。当下他最想解决的问题是信息化,先收取数据,然后通过建立地方数据中心的形式,与企业合作,做地理信息垂直领域的数据开放和挖掘。
走在前沿的贵州省,希望以发展大数据弯道超车,实现新经济的腾飞。然而从数据开放的程度来看,当地一些职能部门,所谓的公开数据还停留在提供PDF文件阶段,远非结构化的数据,按照国际数据公开标准来说,并不能算政府数据公开。
单从数据开放来看,思路最清晰规划更具体的,还是广东、上海等发达地区。对于地方政府的大数据园区来说,发达地区好比“富二代”,一出生就含着金汤匙,但大部分地区还是“穷二代”,需要更大力度的数据挖掘与开放。由于各地在大数据方面存在差距,不同区域的数字鸿沟会继续深化。
饥渴的大数据创业公司
在掘金大数据的背景下,企业早已经等不及了。早些年,部分企业通过各种交易手段,获得政府数据。在数据开放的背景下,部分企业还在依托不规范交易,已经有政府部门被巡视组查出了因数据交易衍生腐败。
一部分企业希望参与政府数据公开进程,帮助政府做数据公开。比如数据堂公司与贵阳市政府共建数据生态城市。还有一批公司,则是急速扩张,跟各地政府成立相关的合资公司。
当然,还有转型大数据二次创业的公司。在贵阳数博会上,笔者见到很多大数据公司,就是以前卖电脑和软件开发的IT公司,转型做大数据,业务范围无所不在,包括智慧城市、软件开发、智慧农业、医疗等。
除上述归类外,企业为了获取政府数据,采取各种“曲线救国”的招式。前不久,笔者熟悉的一家南方大数据创业公司,为了获取某西部城市政府部门数据,报名参加当地的创业大赛,希望通过得奖,引起当地政府重视,达成数据合作。
这家公司的CEO在参赛间隙,拖着行李箱与当地国企联络,希望能够以合资的形式成立公司,共同挖掘当地数据。
这位CEO还通过各种方式,找到该市分管大数据的负责人,希望能够谈成合作。他勾画的蓝图很美好:获取一个城市的数据,做成样板,然后在全国复制,迅速从0到1成为该行业的“寡头”企业。
不过,目前还没有关于这家公司取得实质进展的消息,但这家公司寻求政府大数据开放的决心和路径,颇具有典型性。
政府资源导向,仍是目前很多数据公司努力的方向。很多大数据公司在融资过程中,强调一定要有国有资本进入,而且坚决远离境外资本。
从2015年国内最大的几笔大数据创业公司的融资情况来看,几乎都有国有资本进入,即便只占很小的比重。在某大数据公司融资发布会上,笔者随机问了几家投资机构选择投资这家公司的原因,答案惊人一致:有政府数据资源。
而在一些专家和专业投资人看来,从价值投资的角度,一是真正有技术优势的公司,二是有自己数据源的公司。依托政府资源的公司,从长远来说,并没有太大的投资价值。
乐观者认为,政府数据开放最终会走向规范化,有科技含量的公司最终会在泡沫破灭后存活下来。
BAT能否领军?
BAT中的某一家,会成为全球最大的数据公司么?
在专业人士看来,媒体喜欢造概念,这个说法很不专业。因为数据就像石油一样,每个地理区间都有,谁储存了多少,很难量化和比较。
马化腾和张小龙都说,他们很焦虑,因为用户花在微信上的时间太多了。不过马化腾又说,微信公众号是腾讯前三年最伟大的发明,因为可以把人留在微信上,大家就离不开了。
BAT三家公司一方面通过自身的数据,做出反映数字中国的图谱,甚至把脉经济走向;另外也在建立自身的数据生态体系;以网络为代表,则认为大数据的最终应用是人工智能。
京东CTO张晨告诉笔者,因为京东有自己的物流体系,其电商数据包括详细的消费者画像。张晨说,如果通过电商大数据分析,提高精准服务水平,能提高销售一个百分点,对京东来说都是很大的大数据价值变现。
互联网企业的数据,在整个大数据生态中,能够起到多大作用,各方都在摸索。很多人认为,互联网企业的数据价值被高估了。
比如韩亦舜认为,相对实体经济来说,互联网企业的数据,更多是第三产业,是对消费者端的,相对整个实体经济,比如说制造业体系产生的数据,互联网数据并不算多。
“互联网只是个工具。”国家统计局一位原副局长在一次数据研讨会上直言。他认为,互联网是传递现代数据的工具,不能唱得比实体经济还高。
至于BAT如何从大数据掘金,笔者聊了很多业内人,听得都不太明白,仍不得解。一家企业CEO表示,现在大家的思路其实都不清晰。
6月份,马云在一次活动上说,阿里是一家大数据公司,不过我们也不知道怎么用数据挣钱。
❽ 什么是旅游大数据
“大数据”作为时下最时髦的词汇,开始向各行业渗透辐射,颠覆着很多特别是传统内行业的管理和容运营思维。在这一大背景下,大数据也触动着旅游行业管理运营者的神经,搅动着旅游行业管理运营者的思维;大数据在旅游行业释放出的巨大价值吸引着诸多旅游行业人士的兴趣和关注。那么,对于旅游行业来说,如何应用数据、应用在哪些方面,大地云游通过本文为您解答。
2017年全国旅游工作会议上,国家旅游局局长李金早在工作报告中指出,“着力加强旅游数据中心建设,提升旅游信息化水平”、“改革旅游统计制度”、“加强国家旅游产业运行监测和应急指挥平台建设”、“持续推动旅游信息化工作”等进行了详细的安排部署。如今的数据已经成为一种重要的战略资产,在未来的商业竞争中占据重要位置。