人工智能方法与传统程序不同点
1. 人工智能的编程和一般的计算机编程有什么不同
人工智能编程语言是一类适应于人工智能和知识工程领域的、具有符号处理和逻辑推理能力的计算机程序设计语言。能够用它来编写程序求解非数值计算、知识处理、推理、规划、决策等具有智能的各种复杂问题。
人工智能编程语言有一个共同的特点,那就是这些语言都是面向所要解决的问题、结合知识表示、完全脱离当代计算机的诺依曼结构特性而独立设计的;它们又处于比面向过程的高级编程语言更高的抽象层次。因此,用这些语言编写的程序,在现代计算机环境中,无论是解释或编译执行,往往效率很低。尤其当程序规模很大、很复杂时,将浪费大量系统资源(主要指处理机占用时间和存储空间占用量),使系统性能下降到难以容忍的地步。
2. 人工智能和智能有什么区别
电子类的智能是指:
具有全开放式平台,搭载了操作系统,在使用的同时,可自行安装和卸载各类应用软件,并对功能进行扩充和升级。
如各类智能手机、智能电视等。
人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。
主要区别就是智能产品不“机械”可供人有选择地订制、应用;人工智能代替人的部分劳动。
(参考网络)
3. 简答题 1.人工智能方法与传统程序的不同有哪些
人工智能学科研究的主要内容包括:知识表示、自动推理和搜索方法、机器学习和知识获取、知识处理系统、自然语言理解、计算机视觉、智能机器人、自动程序设计等方面。
4. 强人工智能与通用人工智能有什么本质区别
1、强人工智能和弱人工智能
人工智能的一个比较流行的定义,也是该领域较早的定义,是由当时麻省理工学院的约翰·麦卡锡在1956年的 达特矛斯会议上提出的:人工智能就是要让机器的行为看起来就像是人所表现出的智能行为一样。但是这个定义似乎忽略了强人工智能的可能性。另一个定义指人工智能是人造机器所表现出来的智能。总体来讲,目前对人工智能的定义大多可划分为四类,即机器“像人一样思考”、“像人一样行动”、“理性地思考”和“理性地行动”。这里“行动”应广义地理解为采取行动,或制定行动的决策,而不是肢体动作。
2、强人工智能
强人工智能观点认为有可能制造出真正能推理和解决问题的智能机器,并且,这样的机器能将被认为是有知觉的,有自我意识的。强人工智能可以有两类:类人的人工智能,即机器的思考和推理就像人的思维一样。非类人的人工智能,即机器产生了和人完全不一样的知觉和意识,使用和人完全不一样的推理方式
3、弱人工智能
弱人工智能观点认为不可能制造出能真正地推理和解决问题的智能机器,这些机器只不过看起来像是智能的,但是并不真正拥有智能,也不会有自主意识。
弱人工智能是对比强人工智能才出现的,因为人工智能的研究一度处于停滞不前的状态下,直到类神经网络有了强大的运算能力加以模拟后,才开始改变并大幅超前。但人工智能研究者不一定同意弱人工智能,也不一定在乎或者了解强人工智能和弱人工智能的内容与差别,对定义争论不休。
就现下的人工智能研究领域来看,研究者已大量造出看起来像是智能的机器,获取相当丰硕的理论上和实质上的成果,如2009年康乃尔大学教授Hod Lipson 和其博士研究生Michael Schmidt 研发出的 Eureqa计算机程序,只要给予一些数据,这计算机程序自己只用几十个小时计算就推论出牛顿花费多年研究才发现的牛顿力学公式,等于只用几十个小时就自己重新发现牛顿力学公式,这计算机程序也能用来研究很多其他领域的科学问题上。这些所谓的弱人工智能在神经网络发展下已经有巨大进步,但对于要如何集成成强人工智能,现在还没有明确定论。
4、对强人工智能的哲学辩论
关于强人工智能的争论,不同于更广义的一元论和二元论的争论。其争论要点是:如果一台机器的唯一工作原理就是转换编码数据,那么这台机器是不是有思维的?希尔勒认为这是不可能的。他举了个中文房间的例子来说明,如果机器仅仅是转换数据,而数据本身是对某些事情的一种编码表现,那么在不理解这一编码和这实际事情之间的对应关系的前提下,机器不可能对其处理的数据有任何理解。基于这一论点,希尔勒认为即使有机器通过了图灵测试,也不一定说明机器就真的像人一样有思维和意识。
需要指出的是,弱人工智能并非和强人工智能完全对立,也就是说,即使强人工智能是可能的,弱人工智能仍然是有意义的。至少,今日的计算机能做的事,像算术运算等,在一百多年前是被认为很需要智能的。并且,即使强人工智能被证明为可能的,也不代表强人工智能必定能被研制出来。
5. 什么是人工智能人工智能与计算机程序的区别
普通的计算机程序,逻辑都是由人编写在程序里的,计算机只负责执行。而人工智能需要计算机自己通过对数据的分析找到逻辑,人只提供数据不提供逻辑。
6. 人工智能处理器和传统处理器的区别
人工智能技术需要图形处理器而非传统英特尔芯片的原因是,图形处理器更适合处理并行任务。一个图形处理器集成有数百个不同的运算内核,英特尔至强芯片集成
7. 人工智能和一般的计算机程序最大区别是什么
人工智能 是通过后者来实现的,人工智能的核心是程序,是算法
人工智能目前还远达不到智能生命的程度,1是不够智能 2是还不算生命
但是我觉得未来是有可能达到这个程度的,多看一些科幻作品就更加坚信了
怎么达到高智能
阿法狗不到一年就把围棋界各路好手碾压了
人脸识别已经发展到逃犯在商场露个面就能被千里之外的网警抓到了
李彦宏的无人驾驶车已经可在5环上边自己跑,边放五环之歌了
这些都是人工智能在单项领域的快速突破,短短时间就大有作为,未来在综合方面,什么时候能做出一个能像人一样思考 会判断各种条件做出各种反应的人,也不会太久吧
就像不会用火之前,我们在树上和地上当了几百万年的猴子,没有蒸汽机之前,我们当了几千年的农民,没有电脑之前,人类以为吃饱喝足就是活着的全部事情了
技术的突破,跨过临界点后,改变世界就都是一瞬间
怎么有生命
当一个机器人,智商高到可以不用靠人类而生存下去时候,他就成了生命(他脑子里有各种对付人类想掐断他能源的方法,各种复制繁殖自己的方法,当然这些方法可能是我们给他编的算法,也可能是他自己学习后领悟的)
他就可以说,以后是我们硅基生命的天下了 我们已经不需要你们这些碳基生命了
人类何去何从就不清楚了
所以到时候就得看 人类要把这个人工智能控制在什么范围,能否控制住了
8. 人工智能语言的人工智能语言与传统语言的区别
人们可能会问,用人工智能语言解决问题与传统的方法有什么区别呢?
传统方法通常把问题的全部知识以各种的模型表达在固定程序中,问题的求解完全在程序制导下按着预先安排好的步骤一步一步(逐条)执行。解决问题的思路与冯.诺依曼式计算机结构相吻合。当前大型数据库法、数学模型法、统计方法等都是严格结构化的方法。
对于人工智能技术要解决的问题,往往无法把全部知识都体现在固定的程序中。通常需要建立一个知识库(包含事实和推理规则),程序根据环境和所给的输入信息以及所要解决的问题来决定自己的行动,所以它是在环境模式的制导下的推理过程。这种方法有极大的灵活性、对话能力、有自我解释能力和学习能力。这种方法对解决一些条件和目标不大明确或不完备,(即不能很好地形式化,不好描述)的非结构化问题比传统方法好,它通常采用启发式、试探法策略来解决问题。
人工智能程序与传统程序之间的差别
在处理一些简单问题时,一般传统方法和人工智能用的方法没有什么区别。但在解决复杂问题时,人工智能方法与传统方法有差别。 人工智能方法:人工智能要解决的问题,无法把全部知识都体现在固定的程序中。它要建立一个知识库(包含事实和推理规则),程序根据环境和所给的输入信息以及所要解决的问题来决定自己的行动,所以它是在环境模式的制导下的推理过程。这种方法有极大的灵活性、对话能力、有自我解释能力和学习能力。这种方法对解决一些弱结构(ill structured)问题比传统方法好。弱结构指“x”、“y”不大明确或不完备,即不能很好地形式化,不好描述。“->”用试探法。AI也尚未发展到完全能解决这类问题的全部问题。这类问题是AI研究要解决的问题。随之而来也希望计算机硬件结构也来一个革命,突破冯.诺依曼体系结构。
9. 神经元计算与人工智能传统计算有什么不同
出发点不同,所以侧重点也不同,神经元模拟的是人类神经组织运算机制,在芯片电路设计上和传统AI就有很大的区别,神经元又是AI的一个研究分类
10. 人工智能,机器学习,深度学习,到底有何区别
有人说,人工智能(AI)是未来,人工智能是科幻,人工智能也是我们日常生活中的一部分。这些评价可以说都是正确的,就看你指的是哪一种人工智能。
今年早些时候,Google DeepMind的AlphaGo打败了韩国的围棋大师李世乭九段。在媒体描述DeepMind胜利的时候,将人工智能(AI)、机器学习(machine learning)和深度学习(deep learning)都用上了。这三者在AlphaGo击败李世乭的过程中都起了作用,但它们说的并不是一回事。
今天我们就用最简单的方法——同心圆,可视化地展现出它们三者的关系和应用。
人工神经网络(Artificial Neural Networks)是早期机器学习中的一个重要的算法,历经数十年风风雨雨。神经网络的原理是受我们大脑的生理结构——互相交叉相连的神经元启发。但与大脑中一个神经元可以连接一定距离内的任意神经元不同,人工神经网络具有离散的层、连接和数据传播的方向。
例如,我们可以把一幅图像切分成图像块,输入到神经网络的第一层。在第一层的每一个神经元都把数据传递到第二层。第二层的神经元也是完成类似的工作,把数据传递到第三层,以此类推,直到最后一层,然后生成结果。
每一个神经元都为它的输入分配权重,这个权重的正确与否与其执行的任务直接相关。最终的输出由这些权重加总来决定。
我们仍以停止(Stop)标志牌为例。将一个停止标志牌图像的所有元素都打碎,然后用神经元进行“检查”:八边形的外形、救火车般的红颜色、鲜明突出的字母、交通标志的典型尺寸和静止不动运动特性等等。神经网络的任务就是给出结论,它到底是不是一个停止标志牌。神经网络会根据所有权重,给出一个经过深思熟虑的猜测——“概率向量”。
这个例子里,系统可能会给出这样的结果:86%可能是一个停止标志牌;7%的可能是一个限速标志牌;5%的可能是一个风筝挂在树上等等。然后网络结构告知神经网络,它的结论是否正确。
即使是这个例子,也算是比较超前了。直到前不久,神经网络也还是为人工智能圈所淡忘。其实在人工智能出现的早期,神经网络就已经存在了,但神经网络对于“智能”的贡献微乎其微。主要问题是,即使是最基本的神经网络,也需要大量的运算。神经网络算法的运算需求难以得到满足。
不过,还是有一些虔诚的研究团队,以多伦多大学的Geoffrey Hinton为代表,坚持研究,实现了以超算为目标的并行算法的运行与概念证明。但也直到GPU得到广泛应用,这些努力才见到成效。
我们回过头来看这个停止标志识别的例子。神经网络是调制、训练出来的,时不时还是很容易出错的。它最需要的,就是训练。需要成百上千甚至几百万张图像来训练,直到神经元的输入的权值都被调制得十分精确,无论是否有雾,晴天还是雨天,每次都能得到正确的结果。
只有这个时候,我们才可以说神经网络成功地自学习到一个停止标志的样子;或者在Facebook的应用里,神经网络自学习了你妈妈的脸;又或者是2012年吴恩达(Andrew Ng)教授在Google实现了神经网络学习到猫的样子等等。
吴教授的突破在于,把这些神经网络从基础上显著地增大了。层数非常多,神经元也非常多,然后给系统输入海量的数据,来训练网络。在吴教授这里,数据是一千万YouTube视频中的图像。吴教授为深度学习(deep learning)加入了“深度”(deep)。这里的“深度”就是说神经网络中众多的层。
现在,经过深度学习训练的图像识别,在一些场景中甚至可以比人做得更好:从识别猫,到辨别血液中癌症的早期成分,到识别核磁共振成像中的肿瘤。Google的AlphaGo先是学会了如何下围棋,然后与它自己下棋训练。它训练自己神经网络的方法,就是不断地与自己下棋,反复地下,永不停歇。
|深度学习,给人工智能以璀璨的未来
深度学习使得机器学习能够实现众多的应用,并拓展了人工智能的领域范围。深度学习摧枯拉朽般地实现了各种任务,使得似乎所有的机器辅助功能都变为可能。无人驾驶汽车,预防性医疗保健,甚至是更好的电影推荐,都近在眼前,或者即将实现。
人工智能就在现在,就在明天。有了深度学习,人工智能甚至可以达到我们畅想的科幻小说一般。你的C-3PO我拿走了,你有你的终结者就好了。