『壹』 大数据视频教程哪个好

在网上找一些千锋的大数据视频教程资源,有专门入门级的,可以供你初级阶段的学习

『贰』 本人想自学大数据hadoop,有那种讲得比较全面详细的大数据视频教程资源吗

现在大数据人才的缺口很大,但是从事大数据开发是需要一定的数据库基础和编程基础的,而且大数据的教学视频或者书籍目前来说适合入门的非常少,课程也非常繁杂。自学的难度不小,如果你的逻辑思维能力足够好的话可以先看尚硅 谷的谷粒学院大数据Hadoop教程。

『叁』 大数据分析包含哪些相关的技术

大数据本身做不了什么。我们通过大数据主要发现和处理一些问题!需要学习数理统计的知识!如回归,相关,建模等!

『肆』 求《大数据时代》电子书(TXT、pdf等)

&fid=1402318300 你要的是这个吗? 不过老实说,这本书有名是因为时间早,内容上说其实还是比较空的。

『伍』 大数据分析工具

1、日志管理工具Splunk(http://www.splunk.com/)
<img src="https://pic4.mg.com/_b.png" data-rawwidth="1894" data-rawheight="902" class="origin_image zh-lightbox-thumb" width="1894" data-original="https://pic4.mg.com/_r.png">

面向使用的人群主要有:
<img src="https://pic1.mg.com/_b.png" data-rawwidth="841" data-rawheight="366" class="origin_image zh-lightbox-thumb" width="841" data-original="https://pic1.mg.com/_r.png">
Splunk的功能组件主要有Forwarder、Serch Head、Indexer三种,然后支持了查询搜索、仪表盘和报表(效果真不是吹的,很精致呀),另外还支持SaaS服务模式。其中,Splunk支持的数据源也是多种类型的,基本上还是可以满足客户的需求。
<img src="https://pic1.mg.com/_b.png" data-rawwidth="554" data-rawheight="389" class="origin_image zh-lightbox-thumb" width="554" data-original="https://pic1.mg.com/_r.png">
目前支持Hadoop1.x(MRv1)、Hadoop2.x(MRv2)、Hadoop2.x(Yarn)三个版本的Hadoop集群的日志数据源收集,在日志管理运维方面还是处于一个国际领先的地位,目前国内有部分的数据驱动型公司也正在采用Splunk的日志管理运维服务。
<img src="https://pic3.mg.com/_b.png" data-rawwidth="834" data-rawheight="396" class="origin_image zh-lightbox-thumb" width="834" data-original="https://pic3.mg.com/_r.png">

可视化部分效果也是很不错的
<img src="https://pic2.mg.com/_b.png" data-rawwidth="554" data-rawheight="260" class="origin_image zh-lightbox-thumb" width="554" data-original="https://pic2.mg.com/_r.png"><img src="https://pic3.mg.com/_b.png" data-rawwidth="554" data-rawheight="259" class="origin_image zh-lightbox-thumb" width="554" data-original="https://pic3.mg.com/_r.png"><img src="https://pic4.mg.com/_b.png" data-rawwidth="554" data-rawheight="258" class="origin_image zh-lightbox-thumb" width="554" data-original="https://pic4.mg.com/_r.png">

2、EverString(Home - EverString)
<img src="https://pic1.mg.com/_b.png" data-rawwidth="479" data-rawheight="159" class="origin_image zh-lightbox-thumb" width="479" data-original="https://pic1.mg.com/_r.png">

everstring主要是通过大数据的预测分析建模为企业提供业务和客户推荐的SaaS服务,获取和积累了两个数据信息资源库,一个行业外部的资源库(公有SaaS收费形式),一个行业自己内部的资源库(私有),然后再通过机器学习和人工智能的方法对数据进行相应行业或是领域的建模,最后得到一个比较不错的结果,优化于人工可以得到的结果,而且Everstring也成为了初创大数据公司里面估值很高的公司。

3、国外的Tableau(http://www.tableau.com/)

可视化界面还是做得不错的
<img src="https://pic2.mg.com/_b.png" data-rawwidth="660" data-rawheight="407" class="origin_image zh-lightbox-thumb" width="660" data-original="https://pic2.mg.com/_r.png">
<img src="https://pic1.mg.com/_b.png" data-rawwidth="1272" data-rawheight="754" class="origin_image zh-lightbox-thumb" width="1272" data-original="https://pic1.mg.com/_r.png">

可是对于价格还是按需掏腰包吧。
<img src="https://pic3.mg.com/_b.png" data-rawwidth="1603" data-rawheight="847" class="origin_image zh-lightbox-thumb" width="1603" data-original="https://pic3.mg.com/_r.png">

4、国内的大数据魔镜分析工具(魔镜—行业领先的大数据可视化分析平台 6.0)
魔镜的大数据平台主要提供的还是数据清洗和ETL、Hadoop数据仓库以及一系列的数据分析服务,可提供的数据分析视图工具类型丰富:
<img src="https://pic1.mg.com/_b.png" data-rawwidth="1256" data-rawheight="688" class="origin_image zh-lightbox-thumb" width="1256" data-original="https://pic1.mg.com/_r.png">

目前国外还时候有很多从事大数据业务的公司,像协助美国CIA找到本拉登的Panlatir,可以预测未来的Recorded Future和,6sence,ETL方向的Etleap,CRM系统方向的Salesforce等,如果说到可视化工具,它应该是大数据处理流程里面的最后展现环节。

国内有个不错的链接,实属干货呀。
盘点:55个最实用大数据可视化分析工具(http://tech.it168.com/a2015/0318/1712/000001712286.shtml

就写到这里吧,分析的不到位的地方,还请指出,谢谢。

补充
----------------------
刚有人问,哪些是目前国内可以用得到的一些数据科学家分析的工具,正好公司有同事是这方面的专家,请教了下,如下:
1、SPSS:主要用于数据建模工作,功能稳定且强大,能够满足中小企业在业务模型建立过程中的需求。
2、BitDeli
BitDeli是今年11月份在旧金山成立的一家初创公司。它能衡量出任何使用python脚本的应用程序的指标,联合创始人兼CEO Ville Tuulos告诉Derrick,脚本可以很简单,也可以很复杂——甚至未来可以延伸到机器学习。不过和“重量级选手”Hadoop相比,BitDeli自认为是一个轻量级的Ruby。
3. Continuuity
Continuuity是前Yahoo首席云架构师Todd Papaioannou和Facebook HBase的工程师Jonathan Gray的心血结晶,Continuuity想让所有的公司都能像Yahoo、Facebook一样运营。该团队创建了一个大数据工具,它可以简化Hadoop以及HBase集群的复杂性,而且包含一系列开发套件,旨在帮助程序员开发大数据应用,该平台采用Hadoop技术,允许开发者在防火墙内外对大数据应用软件进行部署、扩展和管理。公司联合创始人兼首席执行官Todd Papaioannou表示,作为一家初创企业,Continuuity正在试图掀起下一波大数据应用软件的浪潮,公司所提供的工具能够大大提高处于开发状态的软件不同部分与阶段的扩展性。
4. Flurry
Flurry是移动应用统计分析领域里的标杆,正因为在行业内独特的优势,它每年的营收高达一亿美元。Flurry拥有非常全面的功能,不仅仅只是帮助开发者构建移动应用,它还帮助开发者分析所有的数据,进而产生更大的效益。其实数据也支撑了该公司的广告网络,他们通过数据分析可以帮助开发者推送准确的广告到需要的用户面前。不过单纯从移动应用的数据统计功能来看,Flurry绝对是处于领先地位。其功能模块设置合理,分析维度全面,分析流程也易于理解。

『陆』 去哪找大数据机器学习视频

当然是千锋,教学视频不错。

『柒』 求大数据视频教程,小白入门的

大数据hadoop入门精讲

资料链接:https://pan..com/s/1smCTwRj 密码:vp5v

目录

『捌』 大数据有什么技术,大数据技术内容介绍

1、数据采集与预处理

Flume NG,实时日志收集系统

Sqoop,用来将关系型数据库和Hadoop中的数据进行相互转移的工具

流式计算strom,spark streaming等

Zookeeper,是一个分布式的,开放源码的分布式应用程序协调服务

2、数据存储

Hadoop,一个开源的框架,专为离线和大规模数据分析而设计,HDFS作为其核心的存储引擎,已被广泛用于数据存储。

HBase,是一个分布式的、面向列的开源数据库

Yarn是一种Hadoop资源管理器,可为上层应用提供统一的资源管理和调度

Redis是一种速度非常快的非关系数据库

3、数据清洗

MapRece作为Hadoop的查询引擎,用于大规模数据集的并行计算

4、数据查询分析

Hive的核心工作就是把SQL语句翻译成MR程序,可以将结构化的数据映射为一张数据库表

Spark 启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载。Spark 是在 Scala 语言中实现的,它将 Scala 用作其应用程序框架

5、数据可视化

主流的BI平台比如,国外的敏捷BI Tableau、Qlikview、PowrerBI等,国内的SmallBI和新兴的网易有数等。

『玖』 python金融大数据分析 百度云盘pdf

https://pan..com/share/init?surl=gf5GX9L分享密码:awr6

『拾』 想学大数据处理挖掘会使用到的相关算法和统计学知识,推荐基本书,谢谢

我最近买了一本书觉得还不错,但是不知道适合你不,我找了简本,你可以自己下载看看,觉得有用可以去购买的哈零基础学大数据算法零基础学大数据算法