人工智能技术背后系统
㈠ AI技术背后有哪些声音的应用
即使是最自然的电脑声音 - 无论是苹果的Siri还是亚马逊的Alexa - 听起来都像电脑。位于蒙特利尔的初创公司Lyrebird希望通过分析语音记录和相应的文本记录以及识别它们之间的关系,通过人为智能系统来学习模仿人的声音。上周推出的Lyrebird的语音合成可以每秒生成数千个句子 - 比现有方法快得多 - 并且模仿任何语音,这是一个进步,提出了有关如何使用和滥用技术的道德对于将文本转换为口头语言的计算机程序来说,生成自然语音的语音的能力一直是一个核心挑战。Siri,Alexa,Microsoft的Cortana和Google Assistant等人工智能(AI)个人助理都使用文本转语音软件来为用户创建更便利的界面。这些系统通过将来自预先录制的一种特定语音文件的单词和短语拼凑在一起工作。切换到不同的语音 - 比如像一个人的Alexa声音 - 需要一个新的音频文件,其中包含设备可能需要与用户进行通信所需的每个可能的词。Lyrebird的系统可以通过聆听几小时的语音来学习任何声音中的人物,音素和单词的发音。从那里它可以推断生成全新的句子,甚至添加不同的语调和情绪。Lyrebird的方法的关键是人工神经网络 - 它使用旨在帮助它们像人脑一样运作的算法 - 依靠深度学习技术将声音的一部分转换为语音。神经网络通过加强分层神经元单元之间的连接来接收数据并学习模式。
㈡ 什么是人工智能技术
首先我们要知道人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。说起人工智能我们大家都很熟悉,各种人工智能概念,AI概念层不出穷,仔细想来无外乎智能音箱、智能打印机、智能售卖机等等诸如此类似乎没多少“智能”,和我们脑海中的“AI印象”,如:终结者、机器人、阿尔法狗、自动驾驶等技术大相径庭。目前,普遍认为人工智能的研究始于1956年达特茅斯会议,早期人工智能研究中,如何定义人工智能是个喋喋不休的问题,但基调始终是:像人一样决策、像人一样行动、理性的决策、理性的行动等研究方向。人工智能70年来的研究过程中,早期受制于计算机运算速度和存储的限制,人工智能的研究进展缓慢。06年深度学习技术突破到2016年阿尔法狗打败李世石,人工智能的概念世人皆知,那么人工智能主要由哪几部分构成呢?
一、采集:传感器—信息采集
二、处理:CPU—各种算法、架构、系统
三、输出:像人一样行动
四、存储
NORFLASH、NANDFLASH、ONENANDFLASH、DDR1、DDR2、DDR3----。存储内容的压缩、存储、解压缩。
五、显示:
虚拟现实VR、增强型虚拟现实AR。
六、通信
超级宽带。万物互联。
七、电源
医疗器械专用开关电源
工业控制专业开关电源
车载&无人驾驶&无人机专用开关电源。
人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。2017年12月,人工智能入选“2017年度中国媒体十大流行语”。对于想要进入人工智能领域的小白来讲:一开始就接触到人工智能的研究是不现实的,不妨试着学习嵌入式、Python、物联网等和人工智能息息相关的基础领域,先学好基本后再一步步通向人工智能学习之路是个不错的选择。
㈢ 关于人工智能的问题
应用人工智能系统只是AGI的有限版本。
尽管许多人认为,人工智能的技术水平仍然远远落后于人类的智力。人工智能,即AGI,一直是所有人工智能科学家的研发动力,从图灵到今天。在某种程度上类似于炼金术,对AGI复制和超越人类智能的永恒追求已经导致了许多技术的应用和科学突破。AGI帮助我们理解了人类和自然智慧的各个方面,因此,我们建立了有效的算法,这些算法受到我们的追求更加高效计算能力和学习模型的启发。
然而,当涉及到人工智能的实际应用时,人工智能实践者并不一定局限于人类决策、学习和解决问题的纯模型。相反,为了解决问题和实现可接受的性能,AI实践者通常会做构建实际系统所需的事情。例如,深度学习系统的算法突破的核心是一种叫做反向传播的技术。然而,这种技术并不是大脑建立世界模型的方式。这就引出了下一个误解:一刀切的人工智能解决方案。
AI为更美好的未来铺平了道路。尽管人们对人工智能有着普遍的误解,但正确的假设是,人工智能将继续存在,而且确实是通向未来的窗口。AI还有很长的路要走,它在将来会被用来解决所有的问题,并被工业化广泛的使用。人工智能的下一个重大步骤是使其具有创造性和适应性,同时,强大到足以超过人类建立模型的能力。
㈣ 人工智能技术
在地质找矿的人员都知道数据库和人工智能找矿系统,这是两个独立的系统。考虑到现在正在模拟人类脑神经活动的功能,发展人工智能技术,因此,这两个独立的系统将合为一个系统,它将包括本书除前三章外的几乎所有内容。
在第一章及第三章中曾提到直接信息和间接信息的互补性,利用间接信息弥补直接信息的局部性,利用直接信息及其他先验的地质知识来限制间接信息解译的多解性,可以根据当地情况设计出快速而有效的找矿方法。
因此,在地质找矿工作中,数据的处理及解译就显得特别重要。现在,地质数据的处理及解译都是在计算机上进行的。现代的计算机运行速度非常快,有的已达1秒钟万亿次。但传统的计算机是建立纽曼(V.Neumann)型顺序处理结构基础上串行计算机,存在一些缺点和不足,主要的有:运行必须按事先设计时的一整套精确的串行算法来进行,但对很多实际问题中的定性信息及辩证逻辑判决,则很难找到这样的串行算法;容错性差,局部出现小问题或考虑不周便会影响整个系统的工作;学习能力差;串行算法结构在根本上限制了程序的运行速度,不能实时处理。这些不足迫切需要研制和设计具有新的计算原理的新结构计算机,而以人脑为模型的神经网络学的研究是解决这一问题的崭新途径。一旦这种计算机设计出来,结合神经网络动力学系统理论的研究成果,将给信息高科技的应用与开发带来新的变革。
这种新的计算机特别适合于地质信息的处理,因为地质信息中大量的信息是定性信息,矿产预测时特别需要辩证思维。这里所说的定性信息是指信息与待找目标物之间的关系而言,而不是指信息本身而言。例如,物探或化探异常,就其本身而言,都是定量信息,但物化探异常与待找矿产之间的关系,或这些异常与矿产存在与否则不一定有定量关系。又如岩石的蚀变,其本身是模糊信息,但可以定量化,但却无法给出蚀变与矿产存在的定量关系(参看第十章中关于统计信息、模糊信息及定性信息的叙述)。我们只能根据形式逻辑的思维方法编制程序作矿产预测,限制了预测的效果。现在正在开展的神经网络模式识别系统理论的研究,可望在这方面有所突破。
·在目前,信息解译技术中引人入胜的是利用人工智能技术,建立地质找矿的虚拟现实系统。所谓虚拟现实是在计算技术虚拟环境中模仿真实物体的状态,并在视觉仿真环境中运行。利用这种技术,人们坐在一个座舱中,就如进入到一个坑道中或站在一个采矿掌子面前那样,看到了立体的地质现象,这种地质现象是多种地质信息解译的结果。通过用户/对象在虚拟环境中的交互(例如装有传感器的手套,用户可以抓取虚拟空间内的虚拟物体),改变地下地质体的分布,使其所引起的信息(例如物探异常)与观测到的信息符合,而这种地质体的分布又符合先验的地质知识及已有的直接地质信息。由于这时地下地质体分布的改变,充分利用了找矿人员的经验及人脑的辩证思维能力,可以在串行运行的计算机上达到好的解译结果,而且解译的速度是非常快的。
这样一个系统,要有以下五种功能:
1.储存先验的地质知识及工作地区的综合地质信息的数据库,这种数据库能自动快速检索并输出储存的信息,这种数据库还具有一定的联想功能;
2.能直接接受和处理语言、文字、数字及图影等信息;
3.推理、分析、联想和学习等解题功能,例如根据线性方程组中变数的个数及其系数的特点,自动选择解方程式的方法;
4.三维立体显示和声响等功能;
5.输入、输出智能接口。
在目前的虚拟实现技术中,用的是对人脑功能性模拟,还做不到结构性模拟。结构性模拟和功能性模拟是人工模拟脑神经的两种模拟途径。所谓功能性模拟是按照人脑的生理构造来模拟,从模拟神经元的结构开始,逐步制造具有某种思维功能的自动机。已知人脑的结构非常复杂,单是大脑皮层就有140亿个以上神经元,而神经元的树状突与轴突又互相以非常复杂的方式联系着,在一个神经元树状突区域中,可能有几十万个其他神经元的轴突交织在一起。因此,这种模拟,短期内不会成功。现在用的功能性模拟是利用计算机系统来逐次模拟,即先对所研究的问题提出某种假设,即初始模型,并由计算机算出其解,然后将这个解与所获得的信息相比较,并根据比较结果,修改模型,直到两者相差达到一个预先给定的标准为止。功能性模拟已获得很大的成就,如具自学功能的弈棋机等。
㈤ 人工智能和三维技术对管理信息系统的发展有怎样的联系,产生了怎样的影响
首先,管理信息系统,开始进入大众化时代,所以学好它,日后必定会很大需求,需未来的版管理信权息系统,一定是人工智能的,所以人工智能是它的基本功,也是很重要的,最后,三维技术主要是在医疗和人体上会大显神通,因为这些系统都是为人服务的,所以人的三维信息早晚会与这些管理系统相结合,特别是体感技术开始走入大众化后,将会无所不在,所以这三块都是非常有吸引力的,非常值的深入研究,学习下去,未来一定会成为极缺的人才,也将成为未来最重要的人才。
㈥ 浅谈人工智能技术的发展
人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能内的理论、容方法、技术及应用系统的一门新的技术科学。
人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。
人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”,也可能超过人的智能。
人工智能的定义可以分为两部分,即“ 人工”和“ 智能”。“人工”比较好理解,争议性也不大。有时我们会要考虑什么是人力所能及制造的,或者人自身的智能程度有没有高到可以创造人工智能的地步,等等。但总的来说,“人工系统”就是通常意义下的人工系统。
㈦ 人工智能背后的操控者是谁
“9·11 是犹太人干的,把他们都送进毒气室!种族战争现在开始!”
2016年3月23日,一个人设为19岁女性,昵称为 Tay 的聊天机器人在推特上线。这个微软开发的机器人能够通过抓取和用户互动的数据模仿人类的对话,像人一样用笑话、段子和表情包聊天。但是上线不到一天,Tay 就被“调教”成了一个满口叫嚣着种族清洗的极端分子,微软只好以系统升级为由将其下架。
微软聊天机器人的极端言论。
这样的口号并不是聊天机器人的发明,而在社交网络上大量存在着。美国大选期间,一些所谓的“政治新媒体”账号发出的掺杂阴谋论、种族主义的内容,在Facebook 上进行了病毒式传播。这有赖于人工智能协助下的“精准定位”:谁最容易相信阴谋论,谁对现实最不满?相应的政治广告和假新闻能精准地投放到这群人中,使人对自己的看法更加深信不疑。
因为设计缺陷而 “暴走”的聊天机器人,和精心策划的线上政治行为,看起来仿佛是两回事。但这种我们似乎从未见过的景象,却指向了同一个“凶器”——大数据驱动下的人工智能。
1、人工智能有作恶的能力吗?
人工智能会“作恶”吗?面对智能的崛起,许多人抱有忧虑和不安: 拥有感情和偏见的人会作恶,而仅凭理性计算进行判定的计算机似乎也会“作恶”, 且作起来易如反掌。这让许多人(特别是非技术领域的人)对人工智能的发展持悲观态度。
这种忧虑并不是最近才有的。人工智能这个词诞生于上世纪50年代,指可体现出思维行动的计算机硬件或者软件,而 对机器“拥有思维”之后的伦理探讨,早至阿西莫夫开始就在科幻作品里出现。
14 年前,威尔·史密斯主演的电影《机械公敌》里就有这样一个场景:2035 年的人类社会,超高级的人工智能承担大量工作,并与人类和谐相处。这些原本完全符合阿西莫夫“三定律”的人工智能,在一次关键升级之后对人类发起了进攻。这些机器人拥有了思维进化的能力,在它们的推算下,要达到“不伤害人类”的目的,就必须先消灭“彼此伤害”的人类。
十分高产的科幻作家阿西莫夫(1920-1992)。
剑桥分析CEO亚历山大·尼克斯(Alexander Nix)。
剑桥分析并不是一个孤例。澳洲一个 Facebook 的广告客户透露,Facebook 的人工智能会分析其用户特征和所发的内容,给出诸如“有不安全感的年轻人”“抑郁、压力大”等标签,然后有针对性地投放游戏、瘾品和甚至虚假交友网站的广告,从中获取巨大利益。
即使不存在数据泄露问题,对用户数据的所谓“智能挖掘”也很容易游走在“合规”但“有违公平”的边缘。例如,电商能够根据一个人的消费习惯和消费能力的计算,对某个人进行针对的、精密的价格歧视。购买同样的商品,用 iPhone X 手机的用户很可能会比用安卓“千元机”的用户付更多的价钱,因为他们“倾向于对价格不敏感”。而我们所经常谈论的“大数据杀熟”——比如携程老用户订旅馆的价格会更高——也建立在用户行为数据的基础上。
数据的收集本身也值得商榷。前网络人工智能首席科学家吴恩达(Andrew Ng)就曾公开表示, 大公司的产品常常不是为了收入而做,而是为了用户的数据而做;在某一个产品上收集的数据,会用于在另一个产品上获利。 在智能面前,没有所谓的个人隐私和行踪,也很难确定数据收集的边界在哪里,尤其是个人隐私与公共信息、主动提供与被动提供的边界。
总而言之, 在以商业利益为目标的人工智能眼里,并没有“人”或者“用户”的概念,一切都是可以利用的数据。 剑桥大学互联网与社会研究中心教授朔沙娜·祖博夫将这种人工智能和资本“合体”的现状,称之为 “监控资本主义” (Surveillance Capitalism)——在大数据和人工智能的协助下,通过对每个人的监控和信息的榨取,实现资本的最大化。
业界对此的态度很暧昧。AI 作为当下最热门、来钱最快的行当之一,这些动辄年薪50万美元的工程师很少得闲来思考“形而上”的问题。 一位不愿具名的研究人员在与我的微信私聊中表达了他的“个人看法”:“现在的技术离‘通用人工智能’还很远,对社会伦理方面的影响没有那么大,更多还是从繁琐的重复劳动中解脱出来。”
作者试图找到行业内人士对此评论,谷歌(中国)和网络自动驾驶部门的人工智能相关人员均表示,探讨 AI 的社会问题,牵涉到公司利益和形象,比较敏感,不便评论。
“人工智能作为一个工具,如何使用,目前来看决定权依然在人。”俞扬说道 ,“系统的设计者和商业(应用)的提供人员需要对此负责。”
如何负责?这或许需要我们正视人工智能对整个社会关系的挑战。
4、人工智能作恶之后
2018年3月 19 日,一辆自动驾驶的优步(Uber)在美国亚利桑那州惹上了麻烦。面对路中出现的一个推着自行车的女性,这辆车速 38 mph(约61km/h)的沃尔沃在昏暗的光线条件下并没有减速,径直撞了上去,受害者被送往医院之后不治身亡。这是自动驾驶第一例行人致死的事故。
电视台对自动驾驶优步车祸的报道。
事故发生之后,有不少人将矛头指向了自动驾驶的人工智能是否足够安全上,或者呼吁优步禁止自动驾驶。然而更关键的问题在于,亚利桑那有着全美国几乎最开放的自动驾驶政策,事故发生地坦佩市(Tempe)是实行自动驾驶最火的“试验田”之一;事故所在的街区早已做过路线测试,并被自动驾驶的智能点赞。但是在事故发生之后,对于责任的认定依然遇到了困难。
因为人的疏忽造成的车祸数不胜数,人们早已习惯了如何处理、怎样追责;然而机器出错了之后,人们忽然手足无措。 人工智能会出错吗?当然会。只是我们在这个问题上一直缺乏认知。 就如同上文提到的“隐性歧视”,深度学习的“黑箱”,现有的法律法规很难对这些错误进行追究,因为不要说普通人,就连技术人员也很难找出出错的源头。
当人工智能的决策在人类社会中越来越重要时,我们也不得不考虑,智能为什么会犯错,犯错了怎么办;若要让智能摆脱被商业或者政治目的支使的工具,真正成为人类的“伙伴”, 需要怎么监管、如何教育,才能让人工智能“不作恶”。
人工智能的监管问题亟待解决。
对此,现有的法律框架内很难有清晰的、可操作的实施方案。欧盟率先在数据和算法安全领域做出了立法的尝试,2018年5月即将生效的新法规规定,商业公司有责任公开“影响个人的重大决策”是否由机器自动做出,且做出的决策必须要“可以解释”(explainable)。但法条并没有规定怎么解释,以及细到什么程度的解释是可以接受的。
另外一个重要的问题是, 让机器求真求善,需要人类自己直面决策中的黑暗角落。 在 Atari 游戏智能的测试中,游戏中的人工智能 bot 可以用最快的速度找到漏洞开始作弊,而游戏玩家又何尝不是呢?不管是带有歧视的语义分析,针对少数族裔进行的“智能监视”和跟踪,或者把已婚未育女性的简历扔掉的智能简历筛选,都长期以各种形式存在于人类社会中。
人工智能不是一个可预测的、完美的理性机器,它会拥有人类可能拥有的道德缺陷,受制于人们使用的目标和评估体系。 至少目前,机器依然是人类实然世界的反应,而不是“应然世界”的指导和先驱。 对机器的训练同样少不了对人性和社会本身的审视——谁在使用,为了什么而使用,在我们的世界中扮演着怎样的角色?数据是谁给的,训练的目标是谁定的?我们期望中的机器,会继承我们自己的善恶吗?
谷歌中国人工智慧和机器学习首席科学家李飞飞认为, 要让机器“不作恶”,人工智能的开发需要有人本关怀 。“AI 需要反映我们人类智能中更深层的部分,”李飞飞在《纽约时报》的专栏中写道,“要让机器能全面地感知人类思维……知道人类需要什么。”她认为,这已经超越了单纯计算机科学的领域,而需要心理学、认知科学乃至社会学的参与。
未来,人工智能进入更多的领域、发挥更强的功能,是无可争辩的事实。然而,我们的生产关系能否适应人工智能带来的生产力,这句马克思政治经济学的基本原则值得我们认真思考一番。 我们并不想看到未来的“机器暴政”将我们的社会绑在既有的偏见、秩序和资本操纵中。
一个AI
人工智能之所以会作恶,可能就是因为太像人类了吧。